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ABSTRACT
In this article we present novel learning methods for esti-
mating the quality of results returned by a search engine in
response to a query. Estimation is based on the agreement
between the top results of the full query and the top results
of its sub-queries. We demonstrate the usefulness of quality
estimation for several applications, among them improve-
ment of retrieval, detecting queries for which no relevant
content exists in the document collection, and distributed
information retrieval. Experiments on TREC data demon-
strate the robustness and the effectiveness of our learning
algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
Query Difficulty Estimation

1. INTRODUCTION
Most search engines respond to user queries by generating

a list of documents deemed relevant to the query. However,
many information retrieval (IR) systems suffer from a radical
variance in performance; Even for systems that succeed very
well on average, the quality of results is poor for some of the
queries [22, 11]. Thus, it is desirable that IR systems be
able to identify “difficult” queries in order to handle them
properly.

Estimating query difficulty is an attempt to quantify the
quality of results returned by a given system for the query
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over a given collection. An example for such a measure of
quality is the precision-at-10 (P@10) or the mean average
precision (MAP) [22] of the query. Estimation of query dif-
ficulty is advantageous for several reasons:

1. Feedback to the user: The user can rephrase a “diffi-
cult” query to improve system effectiveness.

2. Feedback to the search engine: The search engine can
invoke alternative retrieval strategies for different queries
according to their estimated difficulty.

3. Feedback to the system administrator: The adminis-
trator can identify queries related to a specific subject
that are “difficult” for the search engine, and expand
the collection of documents to better answer poorly
covered subjects.

4. For distributed information retrieval: Estimation can
be used to decide which search engine to use by es-
timating the results of which search engine are best.
Additionally, estimation can be used as a method for
merging the results of queries performed on different
datasets by weighing the results from each dataset.

Recently, the concept of a clarity score [8] has been pro-
posed as an attempt to quantify query difficulty. A clar-
ity score is defined as the difference between the language
model used in the document collection, and the language
model used for the query. If the models are similar, then
the query has a low clarity score – the query describes the
entire collection. If the models are disparate, then the query
identifies a subset of the collection which is likely to be the
answer set for the query. The clarity score has been shown
to correlate positively with the query’s average precision,
hence it could serve as a predictor of query performance.

In this work, we suggest an alternative approach, based
on machine learning techniques, for estimating query diffi-
culty. Our observations, which we describe in detail below,
show that queries that are answered well by search engines
are those whose query terms agree on most of the returned
documents. Agreement is measured by the overlap between
the top results for the full query and the top results for each
of the query terms. Difficult queries are those where either
the query terms cannot agree on top results or most of the
terms do agree beside a few outliers. This is usually the case
where the query contains one rare term that is not repre-
sentative of the whole query and the rest of the query terms
appear together in many irrelevant documents.



For example, consider the TREC query “What impact has
the chunnel had on the British economy and/or the life style
of the British?”. In this query, many irrelevant documents,
selected by the search engine, will contain the words British,
life, style, economy, etc. But the gist of the query, ‘Chunnel’,
is lost.

Our method learns to estimate query difficulty based on
the overlaps between the results of the full query and its
sub-queries. The estimator is induced from training queries
and their associated relevance sets. In the following, we
describe two learning approaches for inducing an estimator
from training data.

The main advantage of our estimator is its simplicity,
and the search engine’s ability to efficiently apply it dur-
ing query execution, since all data it uses can be generated
by the search engine during its normal mode of operation.
For example, the top results for each of the sub-queries can
be accumulated simultaneously during evaluation of the full
query. Furthermore, the learned estimator can be used as a
wrapper to the search engine since it can be applied with-
out intervention in the workings of the search engine. This
can be done by submitting each sub-query independently to
the search engine. Therefore, the learned estimator is not
limited to a specific search engine or a search method.

The rest of the paper is organized as follows: Section 2
describes related work to ours. Section 3 describes our meth-
ods for learning an estimator for query difficulty in full de-
tails. Section 4 describes the experiments we conducted on
TREC data. Section 5 describes three applications for these
estimations, namely: Improving information retrieval (IR),
identifying queries for which no relevant document exist in
the document collection, and merging query results in the
setting of distributed IR. Section 6 concludes and addresses
some directions for future work.

2. RELATED WORK
Estimation of query difficulty has been recently recognized

by the IR community as an important capability for IR sys-
tems. In the Robust track of TREC 2004 [22], systems were
asked to rank the topics by predicted difficulty, with the goal
of eventually being able to use such predictions to do topic-
specific processing. System performance was measured by
comparing the ranking of topics based on their actual preci-
sion to the ranking based on their predicted precision. Pre-
diction methods suggested by the participants varied from
measuring clarity based on the system’s score of the top re-
sults [19, 15], through analyzing the ambiguity of the query
terms [18], to learning a predictor using old TREC topics
as training data [14, 24]. The track results clearly demon-
strated that measuring query difficulty is still intrinsically
difficult.

Amati et. al [1] showed positive correlation with the DFR
(Divergence From Randomness) scoring model to query pre-
cision. By predicting query precision, they were able to
expand only easy queries and to improve their system per-
formance. He and Ounis [12] studied the usefulness of sev-
eral alternative predictors, including one based on the stan-
dard deviation of the inverse document frequency (idf) of the
composing query terms. This predictor is based on the as-
sumption that the terms of a poorly-performing query tend
to have similar idf values. Plachouras et al. [21] experi-
mented with the idf-based predictor and with a similar vari-
ant based on the average inverse collection term frequency

(avICTF) of the query terms. Both predictors showed posi-
tive correlation with query precision over the Robust track’s
topics.

Diaz and Jones [9] use meta-data, attached to documents
in the form of time stamps, to measure the distribution of
documents retrieved over the time domain. They showed
that using these temporal distribution together with the con-
tent of the documents retrieved can improve the prediction
of average precision for a query.

Kwok et. al [14] learn an estimator from training queries,
employing epsilon support vector machine for regression.
The queries are represented by a feature vector contain-
ing document frequencies and query term frequencies of the
most significant keywords of the query. The authors con-
clude that although there is some correlation between ob-
served and prediction topic ranking, better feature settings
may lead to improved results.

The Reliable Information Access (RIA) workshop [11] in-
vestigated the reasons for system variance in performance
across queries. By performing failure analysis on TREC
topics, 10 failure categories were identified [4], including
four categories for which systems fail due to emphasizing
only partial aspects of the query. One of the conclusions
of that workshop was that “...comparing a full topic rank-
ing against ranking based on only one aspect of the topic
will give a measure of the importance of that aspect to the
retrieved set” [11]. Our work follows this direction by es-
timating query difficulty based on the overlap between the
full query and its sub-queries.

3. ESTIMATING QUERY DIFFICULTY
The basic idea behind the estimation of query difficulty is

to measure the contribution of each query term to the final
result set. In our system, query terms are defined as the
keywords (i.e., the words of the query, after discarding stop-
words) and the lexical affinities, which are closely related
query terms found in close proximity to each other [6]. The
features used for learning the estimator are:

1. The overlap between each sub-query (a query based on
one query term) and the full query. The overlap be-
tween two queries is defined as the size of intersection
between the top N results of the two queries. Thus,
the overlap is in the range of [0, N ].

2. The rounded logarithm of the document frequency,
log(DF ), of each of the sub-queries.

Learning to estimate query difficulty using the aforemen-
tioned data presents two challenges. The first is that the
number of sub-queries is not constant, and thus the num-
ber of features for the estimator varies from query to query.
In contrast, most techniques for estimation are based on a
fixed number of features. The second problem in learning
to estimate query difficulty is that the sub-queries are not
ordered so any algorithm which performs a comparison or a
weighted average on an ordered feature vector is not directly
applicable.

In the following, we propose two solutions for these prob-
lems, based on finding a canonic representation for the data.
The first solution bunches the features using a histogram,
and the second one uses a modified tree-based estimator.
We show that a histogram is useful when the number of
sub-queries is large (i.e. there are many keywords and lexi-



cal affinities in the query). The tree-based classifier is useful
primarily for short queries.

The overlap between a sub-query and the full query is a
measure of agreement between these two queries. The κ-
statistics [7] is a standard measure for the strength of agree-
ment between two experts. The Appendix shows that the
κ-statistics is a linear function of the overlap between the
two queries. Thus, our query estimator is based on meta-
statistics over the κ-statistics.

3.1 Query estimator using a histogram
The histogram-based algorithm generates the estimation

in the following manner:

1. Find the top N results for the full query and for each
of the sub-queries.

2. Build a histogram of the overlaps. Denote this his-
togram by h (i) , i = 0, 1, ..., N . Entry h (i) counts the
number of sub-queries which agree with the full query
on exactly i documents in the top N results. Unless
otherwise stated, we used N=10.

3. Predict query difficulty by multiplying the histogram
h, by a linear weight vector c such that Pred = cT · h.
The method by which this weight vector is computed
is described below.

This algorithm can be improved significantly by using as
features both the overlaps and log (DF ) of the terms. For
canonical representation we split log (DF ) into 3 discrete
values1 0− 1, 2− 3, 4+. In this case, the algorithm is modi-
fied so that in stage (1), a two-dimensional histogram is gen-
erated, where entry h(i, j) counts the number of sub-queries
with log (DF ) = i and j overlaps with the full query. For
example, suppose a query has 4 sub-queries, an overlap vec-
tor ov(n) = [2 0 0 1] and a corresponding log (DF ) vector
log (DF (n)) = [0 1 1 2]. The two-dimensional histogram
for this example would be:

h (i, j) =


0 1 2

0 0 0 1
1 2 0 0
2 0 1 0


Before stage (3), the histogram is made into a vector by

concatenating the lines of the histogram, corresponding to
the overlap histogram at each log (DF ) of the term, one after
the other. In the example above, the corresponding vector
for the linear estimator is h(i) = [0 0 1 2 0 0 0 1 0];

Two additional features which were found to be advan-
tageous to the success of the estimator are the score of the
highest-ranked document (as suggested by [19]) and the
number of words in the query. We concatenated these fea-
tures to the histogram data, and the reported results use
these features.

The linear weight vector can be estimated in several ways,
depending on the objective of the estimator. If the object of
the estimator is to predict the P@10 or MAP of a query, a
logical error function would be the Minimum Mean Square
Error (MMSE), in which case the weight vector is computed
using the Moore-Penrose pseudo-inverse[10]:

c =
(
H ·HT

)−1

·H · tT (1)

1In cases where the DF of a term is zero, we take log (DF ) =
0.

where H is a matrix whose columns are the histogram vec-
tors h for the training queries, computed as described above,
and t is a vector of the target measure (P@10 or MAP) for
those queries. However, the objective might also be to rank
the queries according to their expected P@10 or expected
MAP (maximizing Kendall’s-τ between estimated and ac-
tual order), in which case a more suitable optimization strat-
egy is to modify the above equation as suggested in [13]. The
idea is that a linear weight vector will maximize Kendall’s-
τ , if for each query i which is ranked higher than query j,
we enforce the constraint cT · hi > cT · hj . This constraint
can be rewritten in the form: cT (hi − hj) > 0. In practice,
it is better to modify the constraint such that we demand
that cT (hi − hj) ≥ 1 in order to fix the scaling of c [16].
Therefore, instead of using the histogram vectors h directly,
the matrix H is modified to a matrix whose columns are the
differences between the histogram vectors; for each pair of
training queries (i, j) the k-th column is:

Hk = hi − hj ∀i, j = 1, 2, . . . Nr (2)

where Nr is the number of training queries. In this case, the
target vector is modified as follows:

tk =

{
+1 if ti > tj

−1 if tj ≤ ti
∀i, j = 1, 2, . . . Nr (3)

3.2 Query estimator using a modified decision
tree

The histogram-based estimator can be useful only when
enough data is available to construct it. If the query is short,
there are few sub-queries with which to build it, and the
resulting canonical representation is too sparse to be of use
for estimation. In contrast, as we will show below, a tree-
based classifier can make use of much sparser data and thus
it is useful for estimating the difficulty of shorter queries.
The decision tree learning algorithm we present is similar to
the CART algorithm [3], with modification described below.

The suggested tree is a binary decision tree. Each node
consists of a weight vector, a threshold, and a score. Sub-
queries are sorted according to increasing DF. Starting at
the root, the estimation algorithm moves along the branches
of the tree, using one sub-query for deciding the direction of
movement at each node. The algorithm takes a left branch if
the multiplication of the weights at the current node by the
overlap and the logarithm of DF of the current sub-query is
smaller than the threshold, or a right branch if it is larger
than the threshold. Movement is terminated when no more
sub-queries exist or when a terminal node is reached. The
estimation of query difficulty is the score at the terminated
node.

An example of a decision tree is shown in Figure 1. Con-
sider the data of a sample query shown at the top of the fig-
ure. Starting with the first sub-query, its data (pairs of over-
lap and log (DF )) are multiplied by the weights of the cor-
responding node. The multiplication of the first sub-query
(Overlap=3, DF=0) by the root node weights (-1.0,-1.0) is
-3, so the left branch is taken, as shown by the thicker line.
(For simplicity, the threshold for all nodes is assumed to
be zero.) Movement is continued until no more sub-queries
exist or, as in this case, a terminal node is reached. The
resulting estimation in this example is 0.96.

During training of the decision tree, the weight vector
(learned by the above-mentioned Moore-Penrose pseudo-inverse)



is trained at each node to try and split the number of train-
ing queries equally among the branches of the tree accord-
ing to their rank (i.e., their respective ranking according to
P@10 or MAP). This is done by training the weight vector of
the classifier so that it gives a negative value when it is mul-
tiplied by the patterns from those queries with a lower rank
and a positive value when multiplied by the patterns from
those queries that have a higher rank. Thus, low-ranked
queries will have a negative result and be classified to the
left child node and those with the higher rank will have a
positive value for the multiplication and be classified to the
right child node.

Scores are assigned to nodes so that the left part of the
tree will have a lower score compared to its right part. This
is achieved by the following method: The root node has a
score of 1. Taking a left branch implies a division of the
score by 1.5, while a right branch multiplies it by 1.2. These
values were found through a heuristic search.

It is well-known in literature that better decision trees
can be obtained by training a multitude of trees, each in a
slightly different manner or using different data, and averag-
ing the estimated results of the trees. This concept is known
as a Random Forest [2]. Thus, we trained 50 different trees
using a modified resampling of the training data, obtained
via a modification of the AdaBoost algorithm [10]. The
modified AdaBoost algorithm resamples the training data
to improve the final performance of the estimator. Assume
each query from the training set is characterized by the pair
{x, r}, where x is the data from a single training query (i.e.,
pairs of log (DF ) and overlaps for each sub-query, as in the
sample query in Figure 1), and r is the ranking (according
to MAP or P10) of the query. The algorithm for training a
single tree proceeds as follows:

1. Initialize D =
{
(x, r)1 , . . . , (x, r)n}

, kmax, δ (Mini-
mum difference threshold), W1(i) = 1/n, i = 1, . . . , n,
k ← 0.

2. Train a decision tree DTk using D sampled according
to Wk(i).

3. Measure the absolute difference in the location of each
training example classified by the decision tree and its
correct rank. Denote these differences by d(i).

4. Compute Ek, the training error of DTk, measured on
D, Ek =

∑
i (d(i) > δ).

5. Compute the importance of the hypothesis:

α← 1
2

ln
[

(1−Ek)
Ek

]
6. Update the weights:

Wk+1(i)←Wk(i)×
{

eα if d(i) < δ
e−α if d(i) ≥ δ

7. Normalize weights: Wk+1(i) = Wk+1(i)/
∑

i Wk+1(i)

8. Repeat stages 2-7 for kmax iterations.

4. EVALUATION
The query estimation algorithms were tested using the

Juru search engine [24] on two document collections from
TREC: The TREC-8 collection (528,155 documents, 200
topics) and the WT10G collection (1,692,096 documents,
100 topics). We experimented with short queries based on
the topic title and with long queries based on the topic de-
scription. Four-fold cross-validation was used for assessing

Figure 1: Example of a decision tree. See text for
an explanation of this example.

the algorithm: The topics were divided into four equal parts.
An estimator was trained using three of the four parts, and
was then applied to the remaining part for estimation of
its performance. The process was repeated for each of the
parts, and the quoted result is an average of the four results.

The set of topics used for evaluating our data was ranked
according to the estimated MAP/P@10 and according to
the actual MAP/P@10. The distance between the estimated
ranked list and the actual ranked list was measured using
Kendall’s-τ (KT) distance.

The results of this test are shown in Table 1. Both estima-
tors show a reasonable approximation of the correct ranking.
Short queries (i.e., title queries) are estimated better using
the tree-based classifier, while long queries are addressed
better by the histogram-based classifier. However, overall
the results for queries based on the title are inferior to those
based on the description. We attribute this to two causes:
First, title queries are shorter, and thus less information ex-
ists to estimate the query difficulty. The second is that in
some queries, the title contradicts the description and nar-
rative, but since documents are judged by the latter, queries
might be estimated wrongly.

The last two rows of Table 1 describes the use of a sin-
gle estimator for a collection, which is the union of both
datasets. The results point to an improvement in the per-
formance of the predictors. This is because more data (300
topics) was available for building the estimators, and thus
they performed better.

Top Tree Histogram
Database part KTMAP KTP@10 KTMAP KTP@10

T 0.305 0.268 0.254 0.253
TREC-8 D 0.218 0.249 0.439 0.360

T 0.118 0.175 0.143 0.187
WT10G D 0.202 0.098 0.140 0.172

T 0.287 0.280 0.312 0.291
Both D 0.252 0.280 0.464 0.414

Table 1: Kendall’s-τ scores for query estimation
evaluated on TREC-8, WT10G, and a combination
of both datasets. Queries were either short and
based on the title (T) part of the topic, or longer
and based on the description (D) part of the topic.

Note that a random ranking would result in a Kendall’s-τ
score of zero, and a complete agreement would result in a
score of one. For more than about 40 topics, the distribution



of Kendall’s-τ is approximately normal, with a mean of zero
and a variance of 2 (2n + 5) / (9n (n− 1)) (where n is the
number of topics) [20]. Thus, in our case, significance (P <
0.001) is reached when Kendall’s-τ is greater than 0.0046
(for 100 topics) or 0.0015 (for all 300 topics). Thus our
results are extremely significant statistically.

We compared Kendall’s-τ scores of the algorithms de-
scribed in this article to some methods of estimation, pre-
viously suggested by some participants in the Robust track,
namely:

1. Estimation based on the score of the top result [19].

2. Estimation based on the average score of the top ten
results [15].

3. Estimation based on the standard deviation of the
query term inverse document frequency (IDF) [21].

4. Estimation based on learning a Support Vector Ma-
chine for regression ([14]).

Table 2 shows the Kendall’s-τ scores of those methods
for both the 200 older queries and 49 new queries first pro-
vided in TREC 2004. For the 200 older queries we estimated
the learning algorithms’ performance using four-fold cross-
validation, while for the 49 new queries, the 200 older queries
were used for learning. As this table shows, the algorithms
suggested in this article are much more precise compared to
the other four algorithms. The improvement in Kendall’s-τ
scores shows that the suggested algorithms were not overfit
to the training data.

The weights computed by linear regression in the histogram-
based estimator represent the relative significance of the en-
tries in the histogram. It is difficult to interpret the weights
obtained by the linear regression. However, if we assume
that each bin in the histogram can have a finite number of
values then there are a finite number of possible states that
the histogram can have. If an overlap of 10 is considered
between the full query and the sub-queries, and assuming a
binary histogram, there are a total of 211 = 2048 possible
histogram states, corresponding to 211 different histograms.
By computing the estimated precision for each possible his-
togram some intuition regarding the weights (and the algo-
rithm) is gained.

Thus we computed the estimated P@10 for each such his-
togram (using the linear estimation vector obtained using
the title part of 249 topics from the TREC collection), or-
dered the histograms according to the estimation, and aver-

Estimation Title Description
method 200 queries 49 queries 200 queries 49 queries

Top score 0.207 0.260 0.278 0.379
Avg. top 10 0.129 0.211 0.255 0.294
Std IDF 0.222 0.110 0.186 0.243
Ref [14] 0.223 0.330
Overlap+Tree 0.305 0.201 0.218 0.294
Overlap+Hist 0.254 0.371 0.439 0.571

Table 2: Comparison of Kendall’s-τ scores (accord-
ing to MAP) for several estimation methods, for
the 200 older TREC queries and the 49 new TREC
queries. Row 4 cites the highest Kendall’s-τ scores
of the method described in [14] (results for the 200
older queries are not given there).

Figure 2: Examples, from left to right, of the aver-
aged histogram patterns, which generate the lowest,
medium, and the highest estimation for P@10, re-
spectively.

aged each group of 128 consecutive histograms. The aver-
age histogram values for the first, the middle, and the last
slice (each slice is an average of 128 individual histograms)
are shown in Figure 2. This figure demonstrates that easy
queries have some overlaps between sub-queries and the full
query at both high and medium ranges of overlap. Queries
that perform poorly have their overlaps clustered in the
lower end of the histogram. This suggests that a good pat-
tern of overlap would be one where the query is not domi-
nated by a single sub-query. Rather, all (or at least most)
sub-queries contribute somewhat to the final results.

5. APPLICATIONS

5.1 Application 1: Improving IR using query
estimation

As mentioned above, query estimation is useful not only
as feedback to the user, but also as a method for improving
information retrieval. In this section, we describe several
ways in which query estimation can be implemented to at-
tain this goal.

5.1.1 Selective automatic query expansion
Automatic query expansion (AQE) is a method for im-

proving retrieval by adding terms to the query, based on
frequently appearing terms in the top documents retrieved
by the original query. However, this technique works only
for easy queries, i.e., when the search engine is able to rank
high the relevant documents. If this is not the case, AQE
will add irrelevant terms, causing a decrease in performance
[6].

Thus, it is not beneficial to use AQE for every query. In-
stead, it is advantageous to have a switch that will estimate
when AQE will improve retrieval, and when it would be
detrimental to it. Using the same features utilized for the
histogram-based estimator, we trained an SVM classifier [10,
17] to decide when to use AQE and when not to. The SVM
was trained with an RBF (Gaussian) kernel, with a width
of 0.5.

5.1.2 Deciding which part of the topic should be used
TREC topics contain two relevant parts: The short title

and the longer description. Our observations have shown
that in our system, some topics that are not answered well
by the description part are better answered by the title part.

The estimator was used to decide which part of the topic
should be used. The title part was used for difficult topics,
i.e., those ranked (by the estimator) at the bottom 15%
of the topics, while the description part was used for the
remaining 85%.



5.1.3 Varying the parameters of the search engine
according to query estimation

The Juru search engine uses both keywords and lexical
affinities for ranking documents. Usually each lexical affin-
ity is given a weight of 0.25, compared to 0.75 for regular
keywords. However, this value is an average that can address
both difficult and easy queries. In fact, difficult queries can
be answered better by assigning greater weight to lexical
affinity, while easy queries are improved by assigning lexical
affinities a lower weight.

We use a weight of 0.1 for lexical affinites of easy queries,
i.e., queries ranked (by the estimator) at the top 15% of the
queries, while the regular weight of 0.25 was used for the
remaining 85% of the queries.

5.1.4 Results
The results of these methods on the 200 TREC queries are

shown in Table 3. These results were obtained using four-
fold cross-validation. Note that for a fair comparison, runs
should be compared according to the parts of the queries
they use.

Selective AQE is the most efficient method for improv-
ing the precision of queries based solely on the description.
When both query parts are used, it is evident that the switch
between query parts is better than using both at the same
time or just one of the parts.

5.2 Application 2: Detecting missing content
There are some queries for which all the results returned

by the search engine are irrelevant. We define missing con-
tent queries (MCQs) as queries for which there is no relevant
document in the document collection. A useful application
of the query estimator is to identify MCQs.

As far as we know, there were no previous attempts to
identify such queries. However, knowing if a query is an
MCQ is useful for both the user and the search engine man-
ager. The former will know if the document collection con-
tains any answers to her query. The latter can note informa-
tion that is of interest to his customers but is not answered
by his sources of information.

We tested the possibility of using the query estimation for
identifying MCQs by using a novel experimental protocol.
The relevant documents for 166 queries from a set contain-
ing 200 description-part queries and 200 title-part queries
were deleted from the TREC collection. Thus we artificially
created 166 MCQs. A tree-based estimator was then trained

Run name MAP P@10 %no

Description only 0.281 0.473 9.5
Description with AQE 0.284 0.467 11.5
Description with 0.285 0.478 9.5
selective AQE
Description with modified 0.282 0.467 9.5
parameters

Title only 0.271 0.437 10.0
Title + Description 0.294 0.484 8.5
Switch title-description 0.295 0.492 6.0

Table 3: Improvements in retrieval based on query
estimation. %no measures the percentage of queries
for which no relevant document ranked in the top
10 documents.

Figure 3: Receiver operating characteristic (ROC)
curve for distinguishing MCQs from non-MCQ
queries. The line denoted by circles is of the MCQ
classifier without prefilter, while the line denoted by
pluses represents the ROC with prefilter.

to classify MCQs from non-MCQs.
Our experiment consisted of two parts: In the first part,

the estimator was trained using the complete set of 400
queries. In the second part, the query estimator trained in
the previous sections was used as a prefilter of easy queries
before the MCQ classifier. Ten-fold cross-validation was
used throughout the experiment.

The results of our experiment are shown as a Receiver Op-
erating Characteristic (ROC) curve in Figure 3. Different
points on the graph represent different thresholds for decid-
ing if a query is an MCQ or not. This figure shows that
the MCQ classifier coupled with an estimator is extremely
efficient at identifying MCQs. The fact that such a prefilter
is needed (as demonstrated by the poor performance of the
classifier without the prefilter) indicates that the MCQ clas-
sifier, while invoking by itself, groups together easy queries
with MCQ queries. This is alleviated by prefiltering easy
queries using the difficulty estimator.

5.3 Application 3: Merging the results in a dis-
tributed IR system according to difficulty
estimation

Our third application for query estimation involves the
setting of a distributed IR system. In this application, the
search engine queries different datasets, and the results from
the different datasets are merged to form a single ranking of
documents.

The score for a document retrieved from a collection might
or might not be provided. In the later case, only apriori
knowledge about the datasets can be used. In the for-
mer, which we describe in this application, the score can
be used as additional information for merging. However, it
is difficult to rerank the documents since scores are local
for each specific dataset. This can be avoided by comput-
ing global statistics [23], e.g., the idf of the query terms as
though all datasets were merged to a single collection. Other
approaches to the problem are through collection ranking,
whereby each collection is given a score based on its statis-
tics. This ranking is then used for merging the different
rankings by weighting the scores. One of the state-of-the-
art known algorithms that uses this approach is CORI [5].
In this article, we compare our results to the results achieved



using CORI.
The approach we describe below is based on the assump-

tion that only minimal information is supplied by the search
engine operating on a specific dataset, namely, the score of
documents and the idf of all query terms. Thus the method
we describe uses less information than CORI does. Given
this data, our approach is to train a query estimator for each
dataset. When a query is executed, the ranked list of doc-
uments is returned from each dataset and the estimation of
query difficulty is computed for each dataset. The estimated
difficulty is used for weighting the scores and the final rank-
ing is built by merging the lists using these weighted scores.

We tested this approach using the TREC-8 collection.
This collection is comprised of four different sub-collections:
FBIS, FR94, FT, and LA-TIMES. We indexed each of these
separately, and trained a tree-based estimator for each of
these collections. Given a query, the Juru score returned
for each document from its corresponding dataset was mul-
tiplied by the estimation. The final document ranking was
generated by sorting the pool of retrieved weighted docu-
ments. Ten-fold cross-validation was used throughout the
experiment.

Our initial results (see the first three lines of Table 4)
showed that merging using the query estimator reached sig-
nificant improvement in results compared to those obtained
by simple merging, and comparable to CORI (one-tailed
paired t-test, P = 0.10 for both methods).

We then clustered the queries based on their estimations
for each of the datasets in order to see if there is a com-
mon pattern to those queries where weighting using the es-
timations improved results compared to queries where sim-
ple merging sufficed. Clustering was performed using the
well-known k-means algorithm, implemented in [17]. The
clustering revealed two distinct clusters. In one cluster, the
variance of the estimations was small. This cluster corre-
sponded to queries where unweighted scores were better for
merging results. The second cluster contained queries where
the variance of estimations was large (by an order of mag-
nitude compared to the first cluster). This cluster corre-
sponded to cases where the weighted merging was superior
to unweighted merging.

Therefore a better merging scheme is to first test the vari-
ance of the estimations. If the variance is large, it is useful to
use the estimations as a weight. Otherwise, simple merging
suffices. The results of this scheme are shown in the last row
of Table 4. These results are significantly better than CORI
and simple merge alone (one-tailed paired t-test, P = 0.07
and P = 0.05, respectively).

We hypothesize that the necessity for a switch between
weighted and unweighted merging is due to the fact that in
cases where there is little variance in the estimations of diffi-
culty, the actual difference comprises of noise rather than of
information. In this case, it is better to ignore the estima-
tor. However, when the estimator identifies one or more of
the databases as better than the others, weighting is indeed
useful.

6. SUMMARY
In this work we describe two methods for learning an es-

timator of query difficulty. The learned estimator predicts
the expected precision of the query by analyzing the overlap
between the results of the full query and the results of its
sub-queries. Experiments with TREC data demonstrated

Merge method P@10 MAP % no

Unweighted scores 0.414 0.305 12.50
CORI 0.428 0.315 12.00
Weighted scores 0.430 0.315 10.75
Selective weighted scores 0.433 0.318 10.50

Table 4: Results of different merging strategies.

the robustness and the effectiveness of the learning meth-
ods. The estimators, trained over 200 TREC topics, were
able to predict the precision of new unseen 49 topics, while
the quality of prediction was equivalent to the quality of pre-
diction for the trained topics. Thus our methods are robust
and do not overfit with the training data.

We also showed that such an estimator can be used to im-
prove the effectiveness of a search engine, by performing se-
lective automatic query expansion for “easy” queries only, or
by tuning the system parameters according to the expected
query difficulty. We also described two other applications
based on the estimator; identifying missing content queries
(queries with no relevant results in the collection), and merg-
ing search results retrieved form distributed datasets.

There are still many open issues related to this research.
Our results definitely show that the quality of query pre-
diction strongly depends on the query length. Therefore, a
question arises how the predictor can be improved for short
queries, which are the type of queries that a search system
is expected to serve. One of the direction we would like to
consider is looking for additional features that indicate the
query difficulty but on the other hand do not depend on the
query length.

Another difficulty in the learning approach is the restricted
amount of training data. There is much evidence in our ex-
periments that the quality of prediction is increased with the
number of training examples. Whether more training data
for learning a predictor can be accumulated in automatic, or
at least semi-automatic manner, is left for future research.

Following TREC’s Robust track, we evaluated our pre-
dictors by measuring the similarity between the ranking of
the training topics based on their actual precision, to their
ranking based on the predicted precision. Therefore, we
trained our predictors to maximize that measure. However,
for real applications, an optimal predictor should estimate
query precision independently of other queries. Hence, we
think that in such setups alternative evaluation methodolo-
gies for query prediction should be considered.

APPENDIX
The κ-statistic [7] is used for estimating the strength of
agreement between two experts. It is estimated as follows:

κ =
AGObserved −AGChance

1−AGChance
(4)

where AGObserved is the fraction of cases where both experts
agreed on the outcome, while AGChance is the fraction of
cases they would agree upon if both were making random
decisions.

In the case of two queries, the agreement matrix is shown
in Table 5, where ND is the number of documents in the
index, and Ov is the overlap (the number of documents that
both queries agree should be in the top 10 results).



Query 1
Top 10 Not top 10 Total

Query Top 10 Ov 10−Ov 10
2 Not top 10 10−Ov ND − (20−Ov) Nd− 10

Total 10 Nd− 10 ND

Table 5: Agreement matrix for two queries.

Based on this table, the κ-statistic is [7]:

κ =

Ov+(ND−(20−Ov))
ND

−
[(

10
ND

)2

+
(

ND−10
ND

)2
]

1−
[(

10
ND

)2

+
(

ND−10
ND

)2
] (5)

In this case the κ-statistic is a linear function of the overlap.
Thus, the query estimator learns a meta-statistic over the
κ-statistic.
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