
Evaluating the Reverse Greedy Algorithm

Shady Copty
shady@il.ibm.com

Shmuel Ur
ur@il.ibm.com

Elad Yom Tov
yomtov@il.ibm.com

April 7, 2004

Abstract

This paper present two meta heuristics, reverse greedy and
future aware greedy, which are variants of the greedy algo-
rithm. Both are based on the observation that guessing the
impact of future selections is useful for the current selec-
tion. While the greedy algorithm makes the best local se-
lection given the past, future aware greedy makes the best
local selection given the past and the estimated future, and
reverse greedy executes a number of greedy iterations and
chooses the last one as the next choice. Future aware greedy
depends on a future aware utility function which is problem
specific. While we have found such utility functions for the
set cover problem this paper concentrate on reverse greedy
whose description is truly problem independent.

Both algorithms suggested, while not quite as efficient
computationally as the greedy algorithm, are still very effi-
cient. We show interesting problems on which the greedy
algorithm has been extensively studied where the suggested
algorithms outperform greedy. We also show a problem
with different characteristics on which the greedy algo-
rithm is better and try to categorize the kind of problems
for which future aware and reverse greedy are expected to
yield good result.

1 Introduction

Many optimization problems fall under the following de-
scription: the problem has a set of solutions which may

be applied in any order, together with a monotonic utility
function on subsets of the solutions,U . Given two subsets
of solutions A and B ifA⊃ B, U(A) ≥U(B). In addition,
the utility function is usually such that for a given solution
x, U(x|A) ≤U(x|B). The optimization problem is to find
the best utility for a solution of given cardinality. Opti-
mization problems that fall under this description include
the set cover problem with many of its variants [15, 7], the
facility location problems [13, 12], the maximum coverage
problem [11], and many others.

The greedy algorithm chooses solutions, one at a time,
such that each solution, when chosen, gives maximum im-
provement to the utility function, until the cardinality of
solutions is reached. The types of utility functions under
which the greedy algorithm is optimal [20, 18] has been
extensively studied. For example, if the utility function of a
solution is independent of previously chosen solutions, then
the greedy algorithm is optimal. For other problems, while
greedy may not be optimal, it still is the algorithm of choice
[9, 8, 16, 1, 17]. This is because the greedy algorithm is
computationally efficient and tends to yield good results.
There are many studies on the greedy algorithms for such
problems that show upper and lower bounds [19, 10], as
well as other properties.

The greedy algorithm, as its name suggest, is a very
short-sighted algorithm. It always looks for the best short-
term gain. The greedy algorithm gets very good perfor-
mance by ignoring global optimizations which are very ex-
pensive. However, the greedy algorithm also ignores avail-

1

able relevant information that exists in the problem for-
mulation, namely the cardinality of the solution set. We
present here a new variant on the greedy algorithm, which
we call reverse greedy or RGreedy, which takes that car-
dinality into account. We demonstrate, using experiments,
that a large class of problems exists on which RGreedy out-
performs the greedy algorithms. We explain our intuition
regarding the kind of problems for which it is advantageous
to use RGreedy, as well as situations where it does not help
or actually hinders.

We created the RGreedy algorithm after studying a vari-
ant of the set cover problem[3]. In that paper we also de-
fined future aware greedy - FWGreedy. FWGreedy is char-
acterized by a modified weight of the objective function ac-
cording to what is likely to occur in the future. For exam-
ple, in the set cover problem, we use the problem formu-
lation and the knowledge of how many more sets will be
selected to estimate, for each task, the probability that it
will be found in the future. We then greedily choose the
set that finds the most tasks that have not been seen in the
previous sets and that are less likely to be observed in the
future.

Both RGreedy and FWGreedy have initially smaller util-
ity than the greedy algorithm. Our prediction was that
if RGreedy and FWGreedy use the knowledge of cost in
an efficient way, then their utility will surpass that of the
greedy algorithm when we get close to the last set. In-
deed, as Figure 1 shows for the selection of 10 solutions,
RGreedy surpasses Greedy close to the end. The ini-
tial experimental results have encouraged us to examine
RGreedy-type of algorithms further and see how they work
on other problems and how they can be improved.

Section 2 shows the intuition behind RGreedy and sam-
ple problems on which it works well. We then explain sim-
ple variants that may improve the result. Section 3 con-
tains a number of experiments which show problems on
which RGreedy works well. Some initial tuning work for
RGreedy is also shown. Section 4 shows an experiment on
a problem for which RGreedy is not suitable. It also tries
to generalize the type of problems for which we do not ex-

pect this approach to work. Section 5 contains concluding
remarks, as well as suggested avenues for future work.

2 Description and motivation for the
RGreedy algorithm

Our original motivation for the RGreedy algorithm came
when trying to optimize probabilistic regression suites
[3, 6]. Denote byt = {t1, . . . , tn} the set of tasks to be cov-
ered. Lets = {s1, . . . ,sk} be a set of heuristics for which
statistical coverage predictors exist. The probability of cov-
ering the taskt j using heuristicsi is denotedPi

j . The prob-
abilistic resource constraint regression suite problem is to
choose, for any given number, a set of heuristics such that
the number of expected distinct task seen is maximized.

The greedy algorithm for the probabilistic regression
suite problem chooses heuristics, one at the time, such that
each heuristic when chosen increases the objective func-
tion by the maximum amount. For each task the increase in
the objective function is the probability of the heuristics to
cover that tasks multiplied by the probability that it was not
observed by prior heuristics.

The greedy algorithm for constructing probabilistic re-
gression suites with limited resources provides efficient
and high-quality regression suites, but these suites are usu-
ally not optimal. One reason for the sub-optimality of the
greedy algorithm is that it does not consider future steps in
the algorithm. Specifically, the greedy algorithm ignores
the contribution of the heuristics selected in future steps
to the overall coverage. As a result, the greedy algorithm
may select a heuristic with a high probability of covering
a given task, ignoring the fact that this task will be cov-
ered with high probability in the future, even without the
selected heuristic.

We define FWGreedy as an algorithm that chooses solu-
tions, one at a time, such that each solution when chosen
gives maximum improvements to the future aware utility
function, which takes the future into account, as well as the
previously used solutions.

2

For example, consider a simple case, where the goal is
to maximize the coverage of two tasks (T1 andT2) with 10
test cases selected from two heuristics (H1 andH2) and the
coverage probability matrix shown in Table 1.

T1 T2

H1 0.80 0.00
H2 0.30 0.05

Table 1: Coverage probability matrix example

When the greedy algorithm is used, heuristicH1 in the
first step of the algorithm is used because of its contribu-
tion to the coverage ofT1. For the same reason, the greedy
algorithm also selectsH1 in the second step. After the
second step, the probability of coveringT1 is high enough
(0.96), such that the contribution ofH1 to its coverage in
future steps is small. Therefore, the contribution ofH2 to
the coverage ofT2 is dominant in the next 8 steps. The
resulting regression suite created by the greedy algorithm
is W = {2,8}, with an average coverage of 1.3343. The
progress of the average coverage for the greedy algorithm
is shown in Figure 1.

Figure 1: Progress of the greedy and future-aware greedy
algorithms

The greedy algorithm ignores the fact that at each step

the probability of coveringT1 increases regardless of the
heuristics used. Even ifH2 is used in all 10 test cases,
the probability of coveringT1 is 1− (1−0.3)10 = 0.9718.
Given this information, the contribution of selectingH1 be-
comes much lower, andH2 becomes the preferred heuristic.
The resulting regression suite in this case isW = {0,10},
with an average coverage of 1.3730 (see the dashed line in
Figure 1).

The performance of the greedy algorithm can be im-
proved by considering, at each step of the algorithm, not
only the probability that a task is covered in previous steps
of the algorithm, but also the probability that the task will
be covered by future steps. This improvement is possible
only if the size of the regression suite or an estimate of it
are known in advance. Otherwise, prediction of the future
is impossible, because the future may not exist (i.e., we are
in the last step).

The basic greedy algorithm looks for the heuristic that
maximizes the coverage after thek+ i’th step, given the
heuristics used in the previousk steps. That is, in each step
the goal is to maximize

argmax
i

∑
j

(1−Sj)Pi
j ,

whereSj is the probability of covering taskj in the previ-
ous steps andPi

j is the probability of covering taskTj using
heuristicHi . The future-aware greedy algorithm replaces
this goal function with

argmax
i

∑
j

(1−Sj)Pi
j(1−Fj), (1)

whereFj is an estimation of the probability of covering task
Tj in future steps.

The quality of the estimation ofFj affects the quality of
the solution provided by the future-aware algorithm. It is
easy to show that exact knowledge ofFj leads to an opti-
mal solution. The problem is that exactly calculatingFj is
as hard as providing an optimal solution to the probabilistic
regression suite. An optimistic estimation ofFj may de-
grade the quality of the solution, since it may unnecessar-
ily punish good heuristics because of an overly optimistic

3

future. In the extreme case, if we useFj = 1, the greedy
algorithm is reduced to a random selection of heuristics.

When a good method for estimatingFj is used, the
future-aware algorithm should perform better than the
greedy algorithm. But if we look at coverage progress as
function of the step in the algorithm, the greedy algorithm
should perform better than the future-aware greedy in the
early steps. This happens because the greedy algorithm
tries to maximize the current gain, while the future-aware
algorithm looks at a farther horizon. Figure 1 illustrates
this. In general, we expect the future-aware algorithm forn
steps to perform better than the future-aware algorithm for
m steps,m> n, aftern steps.

In our experiments we examined several methods spe-
cific to the set cover problem of estimating the future to
be used by FWGreedy. However, as the future aware util-
ity function is problem-specific, we did not generalize this
idea to other problems.

We did create one generic algorithm – RGreedy – that
takes the estimation of the future into account. Instead of
estimating the future, RGreedy chooses in the future! This
is accomplished by running the regular greedy algorithm to
completion but instead of choosing the solution for the first
step, the solution that was chosen for the last step is selected
and the process is repeated. The intuition is by reversing,
we choose the solution that is chosen with the most knowl-
edge. We start by working on the hard parts and when we
get to the easy parts we work with full knowledge of the
impact of the other solutions on the problem. RGreedy is
fairly efficient, if n is the number of solutions to be chosen
then the cost of RGreedy is at mostn/2 times the cost of
the greedy algorithm.

In this work we have evaluated the RGreedy algorithm on
a number of problems in order to develop intuition on the
types of problem on which it will work. We also checked
if RGreedy could be improved by running the algorithm a
fraction of the way to completion (half or three quarters
for example) and choosing there. The intuition is sim-
ilar to that of classification algorithms that try to avoid
over-classification that can be caused by overly training a

classifier on training data through methods such as cross-
validation [5].

We denote byRGreedy(κ = 0.5), for example, an imple-
mentation of the greedy algorithm in which at every step
we execute the greedy algorithm half the way to the end
and choose the last one. So if the number of heuristics to
be executed is 20 in the first step we run the greedy algo-
rithm 10 times and choose the tenth while after the twelfth
step we run it four times (half way to 20) and choose the
last.

3 Description and experimental results
for the RGreedy algorithm

We demonstrate using two problems the advantage of the
RGreedy algorithm over the greedy algorithm. For each
of the two problems, different settings are investigated. In
each setting, a large number of random instances is gener-
ated as input to the different algorithms. We evaluate the
performance of each algorithm in comparison to the oth-
ers. For each setting, an algorithm’s performance is the
number of times it achieved the best result, normalized by
the number of executions - 10000 for the first experiment,
and 1000 for the second. Note that for the same instance,
two algorithms could achieve the best result. We compare
the results of algorithms to each other, since we don’t know
the optimal result, as it is computationally hard to calculate.
We collected other measures such as the frequency at which
an algorithm achieved the best result exclusively, and how
often the algorithm achieved the best result divided by the
number of other algorithms that achieved the same result in
the same experiment. These measures were omitted since
they show the same trends as the simple measure.

3.1 Probabilistic Regression Suites with Limited
Resources

Automated regression suites are essential in testing large
applications while maintaining reasonable quality and

4

timetables. The main objection to automation of tests, in
addition to the cost of creation and maintenance, is the ob-
servation that if you run the exact same test many times it
becomes a lot less likely to find bugs. To alleviate those
problems, a new regression suite practice, which uses ran-
dom test generators to create regression suites on-the-fly,
is becoming more common. In this regression practice, in-
stead of maintaining tests, regression suites are generated
on-the-fly by choosing several specifications and generat-
ing a number of tests from each.

Given N tasks and K test specifications, in which each
test specification covers each task in a given probability,
choose M test specifications to cover the greatest number
of tasks. This is obviously an instance of a probabilistic
set cover which is an NP hard problem [7]. We discuss the
variant withK = N, were each specification was originally
written to target a certain task, but also in some probability
hits other tasks. This is not guaranteed in the general form
of the probabilistic set cover problem. In the case that the
probability for each specification to hit tasks other than its
targeted task is zero, RGreedy and the greedy algorithm
yield the same outcome. The reason for this is that once
a test specification is chosen, it no longer yields additional
benefit, and so the only difference is the reverse order.

Copty at el. described the greedy algorithm and an
RGreedy algorithm for this problem [3]. The greedy algo-
rithm, chooses a test specification for each step that maxi-
mizes the expected coverage, given preceding choices. The
RGreedy algorithm for the problem runs the greedy algo-
rithm in each step withκ fraction of the number of test
specifications left to choose, and picks the last test speci-
fication as the current chosen test specification.

To show the advantage RGreedy has over the greedy al-
gorithm, we conducted the following experiment: For each
given number of tasks, we randomly generate probability
matrices, that conform with the requirement that each test
specification targets a specific task and hits other tasks in
a certain probability. In table2 an example of such a ma-
trix, where each row represents a test specification and each
column represent a task, the i-th test specification targets

the i-th task. We executed each instance of the problem
against the greedy algorithm and all the variations of the
RGreedy algorithm. Notice that we had to generate matri-
ces that were hard enough for the algorithms, yet with easy
matrices that posed no challenge in terms of limiting the
resources. In these instances both the greedy algorithm and
RGreedy would yield the same result in most cases, since
there is no meaning in being future aware. In this case the
greedy algorithm is preferred because it costs less to yield
the same result.

Tasks

Te
st

S
pe

cs 0.50 0.05 0.55 0.01 0.20
0.32 0.30 0.54 0.03 0.30
0.21 0.14 0.60 0.04 0.35
0.10 0.15 0.56 0.10 0.20
0.00 0.17 0.55 0.01 0.70

Table 2: Test specification matrix

3.1 describes the performance achieved by RGreedy for
different κ in comparison to one another. The complex-
ity axis is our approximation of the complexity, achieved
through different settings of the experiment: Different
numbers of tasks, test specifications, and test executions.
Note thatRGreedy(κ = 0) is the greedy algorithm. We
clearly see that RGreedy is better than the greedy algorithm
for everyκ 6= 1.1. The reason is thatRGreedy(κ = 1.1) fal-
sly estimates the future according to choices that would not
have been taken by the greedy algorithm. We also see that
for this problem the greedy algorithm becomes worse as
complexity increases. Furthermore, we notice that for part
of the experimentRGreedy(κ = 1.0) is the best algorithm
while for othersRGreedy(κ = 0.9) is best, which clearly
indicates that the bestκ to use depends on the problem it-
self.

5

Figure 2: Comparing the performance achieved by
RGreedy for differentκ for the probabilistic regression
problem. The complexity axis is our approximation of the
complexity, achieved by different settings of the experi-
ment. Note thatRGreedy(κ = 0) is the greedy algorithm.
We clearly see that RGreedy is better than the greedy al-
gorithm for everyκ 6= 1.1. Note that for this problem the
greedy algorithm becomes worse as complexity increases.
Finally, for some of the experimentsRGreedy(κ = 1.0) is
the best algorithm while for othersRGreedy(κ = 0.9) is
best.

3.2 Facility locating problem

Given N cities, choose M cities in which to build a facility
such that the sum of all minimum distances between cities
and facilities is minimized. Figure 3 shows an example of
such a problem with 12 cities and 4 facilities. This type of
facility-locating problem is NP hard [7].

The greedy algorithm for this problem is quite trivial:
Keep choosing cities to place facilities in until you reach
M cities, at each step, given the preceding choices, choose
the city that minimizes the sum of all minimum distances.
The RGreedy algorithm for the problem is for each step to
run the greedy algorithm with the number of facilities left
to locate, and pick the greedy algorithms’ last facility loca-
tion as the current chosen facility location. In the variations
that try to overcome the over-approximation problem, we
run a fraction of the way to the end, and then the last city,

Figure 3: Cities and Facilities Example. Rectangles denote
cities with facilities, circles denote cities where no facilities
were placed.

RGreedy(κ = 0.5) for example, runs the greedy algorithm
half the way at each step and takes the last solution as the
current solution.

Several experiments were conducted to show the ad-
vantage RGreedy has over the greedy algorithm for this
problem. The number of cities was chosen to be 50
for all the experiments. The number of facilities cho-
sen was 5, 10, 15, 20, 25, 30, 35 and 45. Since choos-
ing where to place M facilities is like choosing where
not to placeN −M facilities, the problems increase in
complexity as they get closer toM = 25, and then de-
crease as they climb to 50. The random maps gener-
ated satisfy the triangle inequality. In this problem, we
examine a different set of RGreedy variations, withκ ∈
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1}. Again,
we evaluate the performance of each of our algorithms in
comparison to other algorithms.

Figure 4 shows the performance of each algorithm. Since
the performance is relative to other algorithms’ results, they
should be examined as such. We clearly see that for the
different number of facilities,RGreedy(κ ≤ 1.0) is better
than that of the greedy algorithm. We again notice that
the best performing RGreedy is different for different set-

6

Figure 4: Comparing performance for the Facility Locat-
ing Problem. Since the performance is relative to other
algorithms’ results, they should be examined as such.
We clearly see that for the different number of facilities,
RGreedy(κ ≤ 1.0) is better than that of the greedy algo-
rithm.

tings, for example the problem withM = 25 is best han-
dled byRGreedy(κ = 0.8) while M = 15 is best handled by
RGreedy(κ = 0.9) andM = 10 by RGreedy(κ = 1). The
behaviour inM = 5 originates from the little difference be-
tween the different fractions for a small horizon such as 5.
As for the loss of significance for problems withM > 25,
we relate it to the problem becoming easier and for the long
horizon where over-approximation is unavoidable.

4 Matching pursuit

Matching pursuit (MP) is a method for the sub-optimal ex-
pansion of a signal in a redundant dictionary [4]. This
algorithm, combined with a dictionary of Gabor functions,
defines a time-frequency transformation. Matching pursuit
works by iterative subtraction of the best matching dictio-
nary functions (known as atoms) from the signal, with the
appropriate amplitude and phase. Since at each iteration
the best matching function is subtracted, this is a greedy
algorithm.

Matching pursuit was used to expand a one-dimensional

chirp signal of length 64, over a dictionary that contained
approximately 21,000 Gabor functions. We ran the MP al-
gorithm (Denoted by Greedy MP) for 20 iterations. At each
iteration, after finding the best fitting atom to the signal, it’s
parameters were fine-tuned using 20 iterations of Nelder-
Mead multidimensional unconstrained nonlinear minimiza-
tion [2]. This atom was then subtracted from the remaining
signal.

The RGreedy version of MP was also used for approxi-
mating the same chirp signal. The RGreedy version of MP
is straightforward – Instead of using the best-fitting atom
for subtraction, the atom used by Greedy MP after, for ex-
ample, 50% of iterations (In the case ofRGreedy(κ = 0.5))
is used. The amplitude and phase used for subtraction are
those found for the Greedy MP.

The test was repeated with various levels of white Gaus-
sian noise added to the chirp signal. Each variant of the
algorithms was run against 10 realizations of noise at each
noise level.

Figure 5 demonstrated the average energy (over 10 real-
izations) of the residual signal, when approximating a sig-
nal with no noise added. As can be expected, Greedy MP
(RGreedy withκ = 0) reduces the residual energy more
rapidly compared to RGreedy withκ > 0, which reduces
most of the energy at latter iterations.

As figure 6 shows, at a given noise level Greedy MP at-
tains a smaller residual energy compared to any variant of
RGreedy MP. This effect is more prominent at lower noise
levels where the difference in the residual energy of Greedy
MP and RGreedy MP is larger than an order of magnitude.

This is most likely due to the fact that the dictionary
contains smooth Gabor functions. Thus, Greedy MP first
finds a fit for the global features of the signal, and gradu-
ally progresses to fitting more localized features. By using
the atoms found in later iterations as the first atoms to be re-
moved, the global features (That contain the most energy in
the signal) are removed, and thus it is difficult for RGreedy
MP to remove energy as efficiently as Greedy MP. This ex-
plains why, at high noise levels, where the smoothness of
the signal is lost, the difference between Greedy MP and

7

Figure 5: The residual energy of a signal through 20 it-
erations of the RGreedy algorithm with different parame-
ters. This figure shows the average residual energy (Over
10 runs) of a noiseless chirp through 20 iterations of the
RGreedy algorithm. Note that the RGreedy algorithm with
κ = 0 is the Greedy MP (Greedy) algorithm. The residual
energy decays rapidly for the first iterations whenκ = 0, as
opposed to a small decrease in initial iterations and a rapid
decrease in later iterations whenκ > 0.

RGreedy MP is less pronounced compared to the difference
at low noise levels.

5 Conclusions

This paper present two meta heuristics, RGreedy and FW-
Greedy which are variants of the greedy algorithm. Both
are based on the observation that guessing the impact of
future selections is useful for the current selection. While
the greedy algorithm makes the best local selection given
the past, FWGreedy makes the best local selection given
the past and the estimated future, and RGreedy executes a
number of greedy iterations and chooses the last one as the
next choice. FWGreedy depends on a future aware utility
function which is problem-specific. While we found such
utility functions for the set cover problem [3, 6], we decided
to concentrate our checks on RGreedy, whose description is

Figure 6: Comparison of the final residual energy obtained
using the RGreedy algorithm with varying levels of noise
added to the signal. This figure shows that as the signal
becomes noisier the performance of the RGreedy algorithm
with different κ values converge. Note that the RGreedy
algorithm withκ = 0 is the Greedy MP (Greedy) algorithm.

truly problem-independent.

Many problems exist which contain hard and easy com-
ponents. It is a common strategy to try to solve the hard
parts first and then deal with the rest. For example, the
greedy implementation of the set cover problem contains
an initial step in which all the subsets that contain an ele-
ment which only they cover are selected. Another example
is packing, in which items that are hard to fit are selected
first. An even more extreme example is in [14], where two
playing strategies for Othello were compared - A greedy
strategy and an approach that tried to figure out the impor-
tant aspects of the game and concentrate on them. In a game
between the two the latter will be in a losing position all the
way to the very end, where the situation will dramatically
reverse. Pure greedy algorithms, due to their preference
of quantity over quality, tend to miss those harder cases.
RGreedy and FWGreedy both give preference to the harder
problems and start with them. Both contain a built-in mech-
anism, based on the cardinality of the solution set to be cho-
sen, which calibrates the selection of solutions whose con-

8

tribution is not too small for the selected cardinality. The
very esthetically pleasing result is that the utility function
of the solutions suggested surpass that of the greedy algo-
rithm only close to the solution cardinality, for any given
cardinality.

We selected three problems, which were extensively
studied, on which to compare RGreedy to the greedy algo-
rithm. We showed that in two of these instances, set cover
and facility location, RGreedy outperforms the greedy al-
gorithm. But on one of them, the matching pursuit, greedy
is better. We think that the difference is that the match-
ing pursuit problem when solved using RGreedy has the
property that applying small corrections first, gives it non
smooth characteristic that detract from the first solutions.
This is similar to packing first the small items and then be-
ing unable to pack the hard to fit items. On the set cover
problem and the facility location problem we found that
choosing first the harder solutions improve the final result.
Our conjecture is that after choosing first the hard solutions
the selection between the easy solutions, of which more ex-
ist, is more efficient.

This paper has shown the promise inherent in the two
meta heuristics. Further research is needed in order to find
out the characteristic of problems on which RGreedy and
FWGreedy are expected to out perform the greedy algo-
rithm. We have not touched at all on lower and upper
bounds. The only theoretical result we have is that if the
greedy algorithm is optimal so is RGreedy, which is not a
very interesting result. It will be interesting to know if there
are problems on which RGreedy has a better theoretical up-
per (and lower) bound then greedy. Many of the proofs that
show bounds on the greedy algorithm use the fact that its
short sighted nature to causes it to perform poorly. Such
methods will be harder to deploy on RGreedy.

Another interesting venue of research is optimization of
RGreedy. We have found out that there is correlation be-
tween the ”‘hardness”’ of the problem and the bestκ to use.
Work is needed to find out if this is indeed the case and how
to predict which value ofκ to use. Another, quite likely,
possibility is that the optimalκ is not a constant fraction of

the number of the solutions left, but maybe just a constant,
or a number that could change during the calculation, being
either longer or shorter in the beginning.

References

[1] E. Buchnik and S. Ur. Compacting regression-suites
on-the-fly. InProceedings of the 4th Asia Pacific Soft-
ware Engineering Conference, December 1997.

[2] T. Coleman, M. Branch, and A. Grace. Optimization
toolbox for use with matlab, 1990.

[3] S. Copty, S. Fine, S. Ur, and A. Ziv. Future aware al-
gorithms for probabilistic regression suites. submitted
to ISSRE 2004, 2004.

[4] G. Davis, S. Mallat, and Z. Zhang. Adaptive
time-frequency approximation with matching pur-
suits. Proceedings of the SPIE, (2242):402–413,
1994.

[5] R. Duda, P. Hart, and D. Stork.Pattern classification.
John Wiley and Sons, Inc, New-York, USA, 2001.

[6] S. Fine, S. Ur, and A. Ziv. A probabilistic regression
suite for functional verification. DAC04, 2004.

[7] M. Garey and D. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H.
Freeman, 1979.

[8] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test
selection techniques. InProceedings of the 20th inter-
national conference on Software engineering, pages
188–197. IEEE Computer Society, 1998.

[9] M. J. Harrold, J. A. Jones, T. Li, D. Liang, and A. Gu-
jarathi. Regression test selection for java software. In
Proceedings of the 16th ACM SIGPLAN conference
on Object oriented programming, systems, languages,
and applications, pages 312–326. ACM Press, 2001.

9

[10] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing lp.J.
ACM, 50(6):795–824, 2003.

[11] S. Khuller, A. Moss, and J. S. Naor. The bud-
geted maximum coverage problem.Inf. Process. Lett.,
70(1):39–45, 1999.

[12] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a local search heuristic for facility loca-
tion problems. InProceedings of the ninth annual
ACM-SIAM symposium on Discrete algorithms, pages
1–10. Society for Industrial and Applied Mathemat-
ics, 1998.

[13] M. Mahdian, E. Markakis, A. Saberi, and V. Vazi-
rani. A greedy facility location algorithm analyzed
using dual fitting.Lecture Notes in Computer Science,
2129:127–??, 2001.

[14] D. E. Moriarty and R. Miikkulainen. Evolving com-
plex Othello strategies using marker-based genetic en-
coding of neural networks. Technical Report AI93-
206, Department of Computer Sciences, The Univer-
sity of Texas at Austin, 1993.

[15] M. J. Moshkov. Greedy algorithm for set cover in con-
text of knowledge discovery problems. In A. Skowron
and M. Szczuka, editors,Electronic Notes in Theoret-
ical Computer Science, volume 82. Elsevier, 2003.

[16] G. Rothermel and M. J. Harrold. A framework for
evaluating regression test selection techniques. In
Proceedings of the 16th international conference on
Software engineering, pages 201–210. IEEE Com-
puter Society Press, 1994.

[17] A. G. M. S. Elbaum and G. Rothermel. Test case
prioritization: A family of empirical studies.IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
28(2):159–182, 2002.

[18] V. V. Shenmaier. A greedy algorithm for maximiz-
ing a linear objective function.Discrete Appl. Math.,
135(1-3):267–279, 2004.

[19] P. Slavik. A tight analysis of the greedy algorithm for
set cover. InProceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 435–
441. ACM Press, 1996.

[20] A. Vince. A framework for the greedy algorithm.Dis-
crete Appl. Math., 121(1-3):247–260, 2002.

10

