Evaluating the Reverse Greedy Algorithm

Shady Copty Shmuel Ur Elad Yom Tov
shady@il.ibm.com ur@il.ibm.com yomtov@il.ibm.com
April 7, 2004
Abstract be applied in any order, together with a monotonic utility

function on subsets of the solutiot$, Given two subsets
This paper present two meta heuristics, reverse greedy ghgblutions A and B ifA > B, U (A) > U(B). In addition,
future aware greedy, which are variants of the greedy algige utility function is usually such that for a given solution
rithm. Both are based on the observation that guessing jhe (X|A) < U(x|B). The optimization problem is to find
impact of future selections is useful for the current selegre best utility for a solution of given cardinality. Opti-
tion. While the greedy algorithm makes the best local s@ization problems that fall under this description include
lection given the past, future aware greedy makes the kfstset cover problem with many of its variants [15, 7], the
local selection given the past and the estimated future, g&gllity location problems [13, 12], the maximum coverage
reverse greedy executes a number of greedy iterations gfshlem [11], and many others.
chooses the last one as the next choice. Future aware greequ]e greedy algorithm chooses solutions, one at a time,

depe_n'ds on _afuture aware utility funct_i(_)n which is problegﬂjch that each solution, when chosen, gives maximum im-
specific. While we have found such utility functions for the, 5\ ement to the utility function, until the cardinality of
set cover pro'blgm t'hIS paper concgntrate on reverse gregﬂﬁtions is reached. The types of utility functions under
whose description is truly problem independent. \ jich the greedy algorithm is optimal [20, 18] has been
Both algorithms suggested, while not quite as efficieQf;ensjvely studied. For example, if the utility function of a
computationally as the greedy algorithm, are still very effi) \tion is independent of previously chosen solutions, then

cient. We show interesting problems on which the greegiy, greedy algorithm is optimal. For other problems, while
algorithm has been extensively studied where the sugge dy may not be optimal, it still is the algorithm of choice

algorithms outperform greedy. We also show a problq@, 8, 16, 1, 17]. This is because the greedy algorithm is

with different characteristics on which the greedy alggmpytationally efficient and tends to yield good results.
rithm is better and try to categorize the kind of problemg,ere are many studies on the greedy algorithms for such

fqr which future aware and reverse greedy are eXpeCte?)FBblems that show upper and lower bounds [19, 10], as
yield good result. well as other properties.

The greedy algorithm, as its name suggest, is a very

1 Introduction short-sighted algorithm. It always looks for the best short-
term gain. The greedy algorithm gets very good perfor-

Many optimization problems fall under the following demance by ignoring global optimizations which are very ex-
scription: the problem has a set of solutions which magnsive. However, the greedy algorithm also ignores avail-

able relevant information that exists in the problem fopect this approach to work. Section 5 contains concluding
mulation, namely the cardinality of the solution set. Wemarks, as well as suggested avenues for future work.
present here a new variant on the greedy algorithm, which
we call reverse greedy or RGreedy, which takes that car-
dinality into account. We demonstrate, using experimerés, Description and motivation for the
that a large class of problems exists on which RGreedy out- RGreedy algorithm
performs the greedy algorithms. We explain our intuition
regarding the kind of problems for which it is advantageo@®ir original motivation for the RGreedy algorithm came
to use RGreedy, as well as situations where it does not h&len trying to optimize probabilistic regression suites
or actually hinders. [3, 6]. Denote byt = {t1,...,t,} the set of tasks to be cov-
We created the RGreedy algorithm after studying a vagied. Lets= {s;,...,s} be a set of heuristics for which
ant of the set cover problem[3]. In that paper we also diatistical coverage predictors exist. The probability of cov-
fined future aware greedy - FWGreedy. FWGreedy is charing the task; using heuristics is denotedD}. The prob-
acterized by a modified weight of the objective function agbilistic resource constraint regression suite problem is to
cording to what is likely to occur in the future. For exanshoose, for any given number, a set of heuristics such that
ple, in the set cover problem, we use the problem fornthe number of expected distinct task seen is maximized.
lation and the knowledge of how many more sets will be The greedy algorithm for the probabilistic regression
selected to estimate, for each task, the probability thasigte problem chooses heuristics, one at the time, such that
will be found in the future. We then greedily choose theach heuristic when chosen increases the objective func-
set that finds the most tasks that have not been seen irtittreby the maximum amount. For each task the increase in
previous sets and that are less likely to be observed in the objective function is the probability of the heuristics to
future. cover that tasks multiplied by the probability that it was not
Both RGreedy and FWGreedy have initially smaller utibbserved by prior heuristics.
ity than the greedy algorithm. Our prediction was that The greedy algorithm for constructing probabilistic re-
if RGreedy and FWGreedy use the knowledge of costgnession suites with limited resources provides efficient
an efficient way, then their utility will surpass that of thand high-quality regression suites, but these suites are usu-
greedy algorithm when we get close to the last set. ity not optimal. One reason for the sub-optimality of the
deed, as Figure 1 shows for the selection of 10 solutiogegedy algorithm is that it does not consider future steps in
RGreedy surpasses Greedy close to the end. The ihe algorithm. Specifically, the greedy algorithm ignores
tial experimental results have encouraged us to exaniine contribution of the heuristics selected in future steps
RGreedy-type of algorithms further and see how they wdrkthe overall coverage. As a result, the greedy algorithm
on other problems and how they can be improved. may select a heuristic with a high probability of covering
Section 2 shows the intuition behind RGreedy and saangiven task, ignoring the fact that this task will be cov-
ple problems on which it works well. We then explain sinered with high probability in the future, even without the
ple variants that may improve the result. Section 3 coselected heuristic.
tains a number of experiments which show problems onWe define FWGreedy as an algorithm that chooses solu-
which RGreedy works well. Some initial tuning work fotions, one at a time, such that each solution when chosen
RGreedy is also shown. Section 4 shows an experimenigires maximum improvements to the future aware utility
a problem for which RGreedy is not suitable. It also tridgnction, which takes the future into account, as well as the
to generalize the type of problems for which we do not egreviously used solutions.

2

For example, consider a simple case, where the goahis probability of coveringl; increases regardless of the
to maximize the coverage of two taskg @ndT,) with 10 heuristics used. Even ifl; is used in all 10 test cases,
test cases selected from two heuristids &ndH,) and the the probability of coveringy is 1— (1—0.3)19 = 0.9718.

coverage probability matrix shown in Table 1. Given this information, the contribution of selectikig be-
comes much lower, and, becomes the preferred heuristic.
Ta | T2 The resulting regression suite in this cas®is= {0, 10},
H; | 0.80| 0.00 with an average coverage of3730 (see the dashed line in
H, | 0.30| 0.05 Figure 1).

The performance of the greedy algorithm can be im-
proved by considering, at each step of the algorithm, not
only the probability that a task is covered in previous steps
of the algorithm, but also the probability that the task will

first step of the algorithm is used because of its contrid?ﬁ cqvered _by future steps. Th|s m_1provement IS possm_le
tion to the coverage dfy. For the same reason, the gree(gﬂy if the size of the regression suite or an estimate of it
algorithm also selectsl; in the second step ' After thefr® known in advance. Otherwise, prediction of the future
second step, the probability of coverifigis high enough is impossible, because the future may not exist (i.e., we are

(0.96), such that the contribution éf; to its coverage in in the last gtep). . o
future steps is small. Therefore, the contributiorHafto The basic greedy algorithm looks for the heuristic that

the coverage off, is dominant in the next 8 steps. Thi'a@ximizes the coverage after theti'th step, given the
resulting regression suite created by the greedy algorithhﬁjr’”St'(l:’_3 used in the previoksteps. That s, in each step
is W = {2,8}, with an average coverage 0f3843. The '€ g0oalis to maximize |

progress of the average coverage for the greedy algorithm arg maXZ(l_ S,-)PJ'-,

is shown in Figure 1. b

Table 1: Coverage probability matrix example

When the greedy algorithm is used, heurigticin the

whereS; is the probability of covering taskin the previ-
ous steps anB} is the probability of covering task; using
heuristicH;. The future-aware greedy algorithm replaces
this goal function with

argrqaxz(l—sj)P}(l—Fj), (1)
J

whereF; is an estimation of the probability of covering task
T; in future steps.

The quality of the estimation d¥; affects the quality of
the solution provided by the future-aware algorithm. It is
easy to show that exact knowledgeFgfleads to an opti-
mal solution. The problem is that exactly calculatiRgs
Figure 1: Progress of the greedy and future-aware gre@gyhard as providing an optimal solution to the probabilistic
algorithms regression suite. An optimistic estimation lgf may de-

grade the quality of the solution, since it may unnecessar-

The greedy algorithm ignores the fact that at each sigppunish good heuristics because of an overly optimistic

3

future. In the extreme case, if we uBg= 1, the greedy classifier on training data through methods such as cross-
algorithm is reduced to a random selection of heuristics.validation [5].

When a good method for estimatirfg§) is used, the We denote byRGreedyk = 0.5), for example, an imple-
future-aware algorithm should perform better than tiheentation of the greedy algorithm in which at every step
greedy algorithm. But if we look at coverage progress @& execute the greedy algorithm half the way to the end
function of the step in the algorithm, the greedy algorithemd choose the last one. So if the number of heuristics to
should perform better than the future-aware greedy in the executed is 20 in the first step we run the greedy algo-
early steps. This happens because the greedy algoritithm 10 times and choose the tenth while after the twelfth
tries to maximize the current gain, while the future-awasgep we run it four times (half way to 20) and choose the
algorithm looks at a farther horizon. Figure 1 illustratdast.
this. In general, we expect the future-aware algorithrmfor
steps to perform better than the future-aware algorithm for .. .
mstepsm > n, aftern steps. 3 Description and experimental results

In our experiments we examined several methods spe- for the RGreedy algorithm
cific to the set cover problem of estimating the future to

be used by FWGreedy. However, as the future aware uiife demonstrate using two problems the advantage of the
ity function is problem-specific, we did not generalize thRGreedy algorithm over the greedy algorithm. For each
idea to other problems. of the two problems, different settings are investigated. In
We did create one generic algorithm — RGreedy — thedch setting, a large number of random instances is gener-
takes the estimation of the future into account. Insteadadéd as input to the different algorithms. We evaluate the
estimating the future, RGreedy chooses in the future! Thisrformance of each algorithm in comparison to the oth-
is accomplished by running the regular greedy algorithmdos. For each setting, an algorithm’s performance is the
completion but instead of choosing the solution for the firstmber of times it achieved the best result, normalized by
step, the solution that was chosen for the last step is seletiednumber of executions - 10000 for the first experiment,
and the process is repeated. The intuition is by reversiagd 1000 for the second. Note that for the same instance,
we choose the solution that is chosen with the most knowito algorithms could achieve the best result. We compare
edge. We start by working on the hard parts and when the results of algorithms to each other, since we don’t know
get to the easy parts we work with full knowledge of thiae optimal result, as it is computationally hard to calculate.
impact of the other solutions on the problem. RGreedyWe collected other measures such as the frequency at which
fairly efficient, if nis the number of solutions to be chosean algorithm achieved the best result exclusively, and how
then the cost of RGreedy is at mast2 times the cost of often the algorithm achieved the best result divided by the
the greedy algorithm. number of other algorithms that achieved the same result in
In this work we have evaluated the RGreedy algorithm tme same experiment. These measures were omitted since
a number of problems in order to develop intuition on thbey show the same trends as the simple measure.
types of problem on which it will work. We also checked
It RGreedy could be improved by running the algorithm8y - propapilistic Regression Suites with Limited
fraction of the way to completion (half or three quarters Resources
for example) and choosing there. The intuition is sim-
ilar to that of classification algorithms that try to avoidutomated regression suites are essential in testing large
over-classification that can be caused by overly trainingyaplications while maintaining reasonable quality and

4

timetables. The main objection to automation of tests, the i-th task. We executed each instance of the problem
addition to the cost of creation and maintenance, is the algainst the greedy algorithm and all the variations of the
servation that if you run the exact same test many time®RiBreedy algorithm. Notice that we had to generate matri-
becomes a lot less likely to find bugs. To alleviate thoses that were hard enough for the algorithms, yet with easy
problems, a new regression suite practice, which uses maatrices that posed no challenge in terms of limiting the
dom test generators to create regression suites on-theréigpurces. In these instances both the greedy algorithm and
is becoming more common. In this regression practice, RGreedy would yield the same result in most cases, since
stead of maintaining tests, regression suites are gener#tiece is no meaning in being future aware. In this case the
on-the-fly by choosing several specifications and genegtieedy algorithm is preferred because it costs less to yield
ing a number of tests from each. the same result.

Given N tasks and K test specifications, in which each
test specification covers each task in a given probability,
choose M test specifications to cover the greatest number

>) . - I Tasks \
of tasks. This is obviously an instance of a probabilistic
set cover which is an NP hard problem [7]. We discuss the
variant withK = N, were each specification was originally
written to target a certain task, but also in some probability
hits other tasks. This is not guaranteed in the general form
of the probabilistic set cover problem. In the case that the
probability for each specification to hit tasks other than its
targeted task is zero, RGreedy and the greedy algorithm Table 2: Test specification matrix
yield the same outcome. The reason for this is that once
a test specification is chosen, it no longer yields additional
benefit, and so the only difference is the reverse order.

Copty at el. described the greedy algorithm and an3.1 describes the performance achieved by RGreedy for
RGreedy algorithm for this problem [3]. The greedy algdalifferent k in comparison to one another. The complex-
rithm, chooses a test specification for each step that mdixi-axis is our approximation of the complexity, achieved
mizes the expected coverage, given preceding choices. ffineugh different settings of the experiment. Different
RGreedy algorithm for the problem runs the greedy algmimbers of tasks, test specifications, and test executions.
rithm in each step wittk fraction of the number of testNote thatRGreedyk = 0) is the greedy algorithm. We
specifications left to choose, and picks the last test spetearly see that RGreedy is better than the greedy algorithm
fication as the current chosen test specification. for everyk # 1.1. The reason is thi®Greedyk = 1.1) fal-

To show the advantage RGreedy has over the greedysl-estimates the future according to choices that would not
gorithm, we conducted the following experiment: For eatlave been taken by the greedy algorithm. We also see that
given number of tasks, we randomly generate probabilior this problem the greedy algorithm becomes worse as
matrices, that conform with the requirement that each tesmplexity increases. Furthermore, we notice that for part
specification targets a specific task and hits other task®irthe experimenRGreedyk = 1.0) is the best algorithm
a certain probability. In table2 an example of such a mahile for othersRGreedyk = 0.9) is best, which clearly
trix, where each row represents a test specification and eiaclicates that the begtto use depends on the problem it-
column represent a task, the i-th test specification target¥.

0.50| 0.05| 0.55| 0.01| 0.20
0.32] 0.30| 0.54| 0.03| 0.30
0.21| 0.14| 0.60| 0.04| 0.35
0.10| 0.15] 0.56 | 0.10| 0.20
0.00| 0.17| 0.55| 0.01| 0.70

Test Specs

5

N\ a

. =

Figure 2: Comparing the performance achieved by

RGreedy for differentk for the probabilistic regressionFigure 3: Cities and Facilities Example. Rectangles denote
problem. The complexity axis is our approximation of th@ties with facilities, circles denote cities where no facilities
complexity, achieved by different settings of the expeivere placed.

ment. Note thaRGreedyk = 0) is the greedy algorithm.

We clearly see that RGreedy is better than the greedy al-)
gorithm for everyk # 1.1. Note that for this problem theRGreedyk = 0.5) for example, runs the greedy algorithm

greedy algorithm becomes worse as complexity increadtdlf the way at each step and takes the last solution as the
Finally, for some of the experimenRGreedyk = 1.0) is Current solution.

the best algorithm while for othelRGreedyk = 0.9) is Several experiments were conducted to show the ad-
best. vantage RGreedy has over the greedy algorithm for this

problem. The number of cities was chosen to be 50
for all the experiments. The number of facilities cho-
sen was 5, 10, 15, 20, 25, 30, 35 and 45. Since choos-

Given N cities, choose M cities in which to build a facilityng where to place M facilities is like choosing where
such that the sum of all minimum distances between citl@f to placeN — M facilities, the problems increase in
and facilities is minimized. Figure 3 shows an example e@@mplexity as they get closer tdl = 25, and then de-
such a problem with 12 cities and 4 facilities. This type éfease as they climb to 50. The random maps gener-
facility-locating problem is NP hard [7]. ated satisfy the triangle inequality. In this problem, we
The greedy algorithm for this problem is quite trivial€xamine a different set of RGreedy variations, withe
Keep choosing cities to place facilities in until you reacif;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1}. Again,
M cities, at each step, given the preceding choices, chow§e€evaluate the performance of each of our algorithms in
the city that minimizes the sum of all minimum distancegomparison to other algorithms.
The RGreedy algorithm for the problem is for each step toFigure 4 shows the performance of each algorithm. Since
run the greedy algorithm with the number of facilities lefhe performance is relative to other algorithms’ results, they
to locate, and pick the greedy algorithms’ last facility locahould be examined as such. We clearly see that for the
tion as the current chosen facility location. In the variatiod#fferent number of facilitiesRGreedyk < 1.0) is better
that try to overcome the over-approximation problem, vigan that of the greedy algorithm. We again notice that
run a fraction of the way to the end, and then the last citlge best performing RGreedy is different for different set-

3.2 Facility locating problem

6

chirp signal of length 64, over a dictionary that contained
approximately 21,000 Gabor functions. We ran the MP al-
gorithm (Denoted by Greedy MP) for 20 iterations. At each
iteration, after finding the best fitting atom to the signal, it's
parameters were fine-tuned using 20 iterations of Nelder-
Mead multidimensional unconstrained nonlinear minimiza-
tion [2]. This atom was then subtracted from the remaining
signal.

The RGreedy version of MP was also used for approxi-
mating the same chirp signal. The RGreedy version of MP
is straightforward — Instead of using the best-fitting atom
Figure 4: Comparing performance for the Facility Locafor subtraction, the atom used by Greedy MP after, for ex-
ing Problem. Since the performance is relative to oth@mnple, 50% of iterations (In the caseRGreedyk = 0.5))
algorithms’ results, they should be examined as su@hused. The amplitude and phase used for subtraction are
We clearly see that for the different number of facilitieshose found for the Greedy MP.

RGreedyk < 1.0) is better than that of the greedy algo- The test was repeated with various levels of white Gaus-
rithm. sian noise added to the chirp signal. Each variant of the
algorithms was run against 10 realizations of noise at each

tings, for example the problem withl = 25 is best han- nois_e level.

dled byRGreedyk = 0.8) while M = 15 is best handled by ~ Figure 5 demonstrated the average energy (over 10 real-
RGreedyk = 0.9) andM = 10 by RGreedyk = 1). The izations) of the residual signal, when approximating a sig-
behaviour inVl = 5 originates from the little difference be@! with no noise added. As can be expected, Greedy MP
tween the different fractions for a small horizon such as@&Greedy withk = 0) reduces the residual energy more
As for the loss of significance for problems with > 25, rapidly compared to RGreedy with > 0, which reduces

we relate it to the problem becoming easier and for the IofigSt Of the energy at latter iterations.
horizon where over-approximation is unavoidable. As figure 6 shows, at a given noise level Greedy MP at-
tains a smaller residual energy compared to any variant of

RGreedy MP. This effect is more prominent at lower noise
4 Matching pursuit levels where the difference in the residual energy of Greedy
MP and RGreedy MP is larger than an order of magnitude.

Matching pursuit (MP) is a method for the sub-optimal ex- This is most likely due to the fact that the dictionary
pansion of a signal in a redundant dictionary [4]. Thiontains smooth Gabor functions. Thus, Greedy MP first
algorithm, combined with a dictionary of Gabor function$inds a fit for the global features of the signal, and gradu-
defines a time-frequency transformation. Matching pursalty progresses to fitting more localized features. By using
works by iterative subtraction of the best matching dictithe atoms found in later iterations as the first atoms to be re-
nary functions (known as atoms) from the signal, with timoved, the global features (That contain the most energy in
appropriate amplitude and phase. Since at each iteratlomsignal) are removed, and thus it is difficult for RGreedy
the best matching function is subtracted, this is a greedf to remove energy as efficiently as Greedy MP. This ex-
algorithm. plains why, at high noise levels, where the smoothness of
Matching pursuit was used to expand a one-dimensiotia signal is lost, the difference between Greedy MP and

7

Figure 5. The residual energy of a signal through 20 Figure 6: Comparison of the final residual energy obtained
erations of the RGreedy algorithm with different paramasing the RGreedy algorithm with varying levels of noise
ters. This figure shows the average residual energy (Oadded to the signal. This figure shows that as the signal
10 runs) of a noiseless chirp through 20 iterations of thecomes noisier the performance of the RGreedy algorithm
RGreedy algorithm. Note that the RGreedy algorithm withith differentk values converge. Note that the RGreedy
K = 0 is the Greedy MP (Greedy) algorithm. The residualgorithm withk = 0 is the Greedy MP (Greedy) algorithm.
energy decays rapidly for the first iterations whe#s 0, as
opposed to a small decrease in initial iterations and a rapid
decrease in later iterations when> 0. truly problem-independent.
Many problems exist which contain hard and easy com-

RGreedy MP is less pronounced compared to the differefi@ents. It is a common strategy to try to solve the hard
at low noise levels. parts first and then deal with the rest. For example, the

greedy implementation of the set cover problem contains

an initial step in which all the subsets that contain an ele-
5 Conclusions ment which only they cover are selected. Another example

is packing, in which items that are hard to fit are selected
This paper present two meta heuristics, RGreedy and Hitét. An even more extreme example is in [14], where two
Greedy which are variants of the greedy algorithm. Bogieying strategies for Othello were compared - A greedy
are based on the observation that guessing the impacstadtegy and an approach that tried to figure out the impor-
future selections is useful for the current selection. Whiignt aspects of the game and concentrate on them. In a game
the greedy algorithm makes the best local selection giveetween the two the latter will be in a losing position all the
the past, FWGreedy makes the best local selection giveay to the very end, where the situation will dramatically
the past and the estimated future, and RGreedy executesvarse. Pure greedy algorithms, due to their preference
number of greedy iterations and chooses the last one asothguantity over quality, tend to miss those harder cases.
next choice. FWGreedy depends on a future aware utiliRGreedy and FWGreedy both give preference to the harder
function which is problem-specific. While we found sucproblems and start with them. Both contain a built-in mech-
utility functions for the set cover problem [3, 6], we decideahism, based on the cardinality of the solution set to be cho-
to concentrate our checks on RGreedy, whose descriptioggn, which calibrates the selection of solutions whose con-

8

tribution is not too small for the selected cardinality. Thtae number of the solutions left, but maybe just a constant,
very esthetically pleasing result is that the utility functioor a number that could change during the calculation, being
of the solutions suggested surpass that of the greedy akgjther longer or shorter in the beginning.

rithm only close to the solution cardinality, for any given

cardinality.
We selected three problems, which were extensiv%eferences

studied, on which to compare RGreedy to the greedy alg?I] E. Buchnik and S. Ur. Compacting regression-suites
rithm. We showed that in two of these instances, set cover on-the-fly. InProceedings of the 4th Asia Pacific Soft-

ano! facility location, RGreedy outperfor_ms the g_reedy al- ware Engineering ConferencBecember 1997.
gorithm. But on one of them, the matching pursuit, greedy
is better. We think that the difference is that the match2] T. Coleman, M. Branch, and A. Grace. Optimization
ing pursuit problem when solved using RGreedy has the toolbox for use with matlab, 1990.
property that applying small corrections first, gives it no
smooth characteristic that detract from the first solution
This is similar to packing first the small items and then be-
ing unable to pack the hard to fit items. On the set cover
problem and the facility location problem we found tha{4] G. Davis, S. Mallat, and Z. Zhang. Adaptive
choosing first the harder solutions improve the final result. time-frequency approximation with matching pur-
Our conjecture is that after choosing first the hard solutions suits. Proceedings of the SPJE2242):402—413,
the selection between the easy solutions, of which more ex- 1994
ist, is more efficient. o
This paper has shown the promise inherent in the we! R- Dudg, P. Hart, and D. Storlattern classification
meta heuristics. Further research is needed in order to find JOhn Wiley and Sons, Inc, New-York, USA, 2001.

out the characteristic of problems on which RGreedy anfé] S. Fine, S. Ur, and A. Ziv. A probabilistic regression

FWGreedy are expected to out perform the greedy algo- gyjte for functional verification. DAC04, 2004.
rithm. We have not touched at all on lower and upper

bounds. The only theoretical result we have is that if thé/] M. Garey and D. Johnso@omputers and Intractabil-
greedy algorithm is optimal so is RGreedy, which is not a ity: A Guide to the Theory of NP-CompletenedsH.
very interesting result. It will be interesting to know if there ~ Freeman, 1979.

are problems on which RGreedy has a better theoretical u] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and

pﬁr (aEd Iov(\j/er) bot;:nd therégreledy_.trl:/l any Ofttr:] N]E)r()to:ﬁ T'tt G. Rothermel. An empirical study of regression test
shovz .OL;? ds ont N tgree y ag_(:rtl m L;SG © a(I: g 'ﬁ selection techniques. Proceedings of the 20th inter-
short sighted nature to causes 1t 1o pertorm poorly. SUCh ,a4i6nal conference on Software engineeripages

methods W!|| be hqrder to deploy on RGre_:edy. S 188-197. IEEE Computer Society, 1998.
Another interesting venue of research is optimization of

RGreedy. We have found out that there is correlation bg9] M. J. Harrold, J. A. Jones, T. Li, D. Liang, and A. Gu-

13] S. Copty, S. Fine, S. Ur, and A. Ziv. Future aware al-
" gorithms for probabilistic regression suites. submitted
to ISSRE 2004, 2004.

tween the "hardness™ of the problem and the hest use. jarathi. Regression test selection for java software. In
Work is needed to find out if this is indeed the case and how Proceedings of the 16th ACM SIGPLAN conference
to predict which value ok to use. Another, quite likely, on Object oriented programming, systems, languages,

possibility is that the optimat is not a constant fraction of and applicationspages 312—-326. ACM Press, 2001.

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Jain, M. Mahdian, E. Markakis, A. Saberi, anfiL8] V. V. Shenmaier. A greedy algorithm for maximiz-
V. V. Vazirani. Greedy facility location algorithms ing a linear objective functionDiscrete Appl. Math.
analyzed using dual fitting with factor-revealing lp. 135(1-3):267-279, 2004.

ACM, 50(6):795—-824, 2003. _ _ _ _
[19] P. Slavik. A tight analysis of the greedy algorithm for

S. Khuller, A. Moss, and J. S. Naor. The bud- setcover. IrProceedings of the twenty-eighth annual
geted maximum coverage problent. Process. Lett. ACM symposium on Theory of computipgges 435—
70(1):39-45, 1999. 441. ACM Press, 1996.

M. R. Korupolu, C. G. Plaxton, and R. Rajaramaf0] A.Vince. Aframework for the greedy algorithriis-
Analysis of a local search heuristic for facility loca- crete Appl. Math.121(1-3):247-260, 2002.

tion problems. InProceedings of the ninth annual

ACM-SIAM symposium on Discrete algorithrpages

1-10. Society for Industrial and Applied Mathemat-

ics, 1998.

M. Mahdian, E. Markakis, A. Saberi, and V. Vazi-
rani. A greedy facility location algorithm analyzed
using dual fitting Lecture Notes in Computer Science
2129:127-?7?, 2001.

D. E. Moriarty and R. Miikkulainen. Evolving com-
plex Othello strategies using marker-based genetic en-
coding of neural networks. Technical Report AlI93-
206, Department of Computer Sciences, The Univer-
sity of Texas at Austin, 1993.

M. J. Moshkov. Greedy algorithm for set cover in con-
text of knowledge discovery problems. In A. Skowron
and M. Szczuka, editor§lectronic Notes in Theoret-
ical Computer Scienceolume 82. Elsevier, 2003.

G. Rothermel and M. J. Harrold. A framework for
evaluating regression test selection techniques. In
Proceedings of the 16th international conference on
Software engineeringpages 201-210. IEEE Com-
puter Society Press, 1994.

A. G. M. S. Elbaum and G. Rothermel. Test case
prioritization: A family of empirical studies.|EEE
TRANSACTIONS ON SOFTWARE ENGINEERING
28(2):159-182, 2002.

10

