A parallel training algorithm for large scale
support vector machines

Elad Yom-Tov
IBM Haifa Research Labs
Haifa 31905
Israel
email: yomtov@il.ibm.com

November 28, 2004

1 Abstract

Support vector machines (SVMs) are an extremely successful class of classifi-
cation and regression algorithms. Building an SVM entails the solution of a
constrained convex quadratic programming problem which is quadratic in the
number of training samples. Previous parallel implementations of SVM solvers
sequentially solved subsets of the complete problem, which is problematic when
the solution requires many support vectors. In this article we introduce a paral-
lel implementation of a sequential SVM solver which overcomes these problems
and makes it possible to solve extremely large SVM problems, with up to several
million training points.

Keywords: Support vector machines, pattern classification, quadratic pro-
gramming.

2 Introduction

Support vector machine (SVM) is an algorithm which can be used, among oth-
ers, for classification[8], regression[7], and ranking[5]. Building a support vector
machine problem entails the solution of a quadratic programming (QP) problem
which is of the size of the number of training patterns. Thus, although there
arise many problems where there are large data sets (OCR, Biolnformatics,
imaging, etc), it is possible to apply SVMs to them due to the difficulty in solv-
ing such large QP problems. In this article we present a highly efficient parallel
implementation of a previously-proposed solver for SVM, and show that it can
solve SVM problems with hundreds of thousands and even millions of training
samples.



There are several formulations of the SVM problem, depending on the spe-
cific application of the SVM (Classification, regression, etc). In the framework
of classification consider a training set

The goal of the SVM is to learn a mapping from x; to y; such that the error
in mapping, as measured on a new dataset, would be minimal. SVMs learn to
find a separating function that maximizes the margin between the data from
the two classes.

Finding the weights of the linear function can be done directly, or through
the solution of the dual problem. In the following we use the notation of [10].
The dual problem is thus:

1
Mazimize Lp(h) =Y h; - ghDh (2)

subjectto 0 < h; <C, i=1,..,N (3)

where D is a matrix such that D;; = yy, K (x;,%;) + Ny;y;, and K (-, -) is
either an inner product of the samples or a function of these samples. In the
latter case this function is known as the kernel function, which can be any
function which complies with the Mercer conditions[8], for example polynomial
functions, radial-basis (Gaussian) functions, or hyperbolic tangents. If the data
is not seperable, C is a tradeoff between maximizing the margin and reducing
the number of misclassifications. Finally, A is a small constant which is not
part of the basic SVM formulation. This parameter was added in [10] as an
additional degree of freedom, and is set as in [10].
The resulting classifier is computed as:

[ (x) = sign ( Z hiyi K (xi,x) + hiyi)\2> (4)

€SV

The matrix D is not a sparse matrix, and when the size of the problem is
large solving the QP problem is difficult.

There are several main methods for finding a solution to the SVM problem|8].
Interior point algorithms solve the optimization problem by simultaneously sat-
isfying the primal and dual feasibility conditions. These algorithms work by
iteratively solving a set of equations. However, it is known that interior point
algorithms have a difficulty solving large-scale SVM problems due to the need
to invert large matrices. A solution, albeit only approximate, can be obtained
by using a low rank approximation of the kernel matrix [3].

Most other methods for solving the SVM problem use subset selection for re-
ducing the problem size. The initial idea for subset selection, known as chunking
[9], worked by storing in memory part of the data, finding the support vectors
for this partial problem, and replacing all the points which are not support vec-
tors with new data, until convergence is met. This approach works well if the



whole set of support vectors can be kept in memory, but when this is not the
case chunking will converge extremely slowly, as we show below.

A slightly different approach are the Working Set algorithms. These al-
gorithms perform gradient descent on a subset of the variables, known as the
working set, while freezing other variables. A working set algorithm was paral-
lelized in [11]. The working set approach is taken farthest in Platt’s sequential
minimal optimization (SMO) algorithm[6], where the working set is comprised
of two samples and the analytic update to the variables is computed. The main
limit of the Working Set algorithms is that if the support vectors cannot be held
in memory the algorithm might not converge because of a phenomena known as
thrashing, the corrections made according to one working set will be canceled
by the corrections of another, and vice-versa.

Finally, some on-line SVM solvers exist. These solvers iterate through the
training data and adjust the solution based on each sample. These are efficient
algorithms for linear SVMs, but cannot be used for nonlinear SVMs.

Most SVM solvers (Surveyed in [8]) are not readily parallelable. In fact, so
far little has been done to parallelize SVMs, a few note exceptions being [11, 2].
However, we believe that the only currently feasible method for solving very
large scale SVM problems is through parallel solvers.

3 Parallel sequential support vector machine solver

In [10] a sequential version of the SVM solver is proposed. A pseudocode of the
algorithm is described below:

Step 1: Initialize h; = 0.
Step 2: For each pattern i =1,..., N compute:

1. For each sample j = 1,..., N compute d(j) = y;y; (K (xi,%5) + /\2)
2. B =31 hd;

3. dh; = min{maz [y(1 — E;), —h;],C — h;}.

4. h; = h; + h;

Step 3: If training has converged (See below), then stop. Otherwise goto step 2.

In [10] it is shown that the learning rate «y is bounded by v < 2/max; {D;;}
and that the training data must be scaled so that [|w||* > 1/4.

It is possible to parallelize the sequential SVM algorithm by running step 2 of
the algorithm on different processing elements for each pattern or for each group
of patterns. The main limitation is that each processing element has to be able
to hold in memory (and compute) d (j) of at least one training sample. In our
(Matlab) implementation this limits the number of training samples to about
5,000,000/ Data dimension. If the number of training samples is smaller than



the maximum it is useful to compute more than one sample on each machine in
order to reduce the number of data transfer operations.

Training was terminated (Step 3) when the largest update to any Lagrange
multiplier h; was small enough or when the target function (Lp(h) = >, h; —
%h - D - h) value decreased compared to the previous iteration.

We implemented the parallel sequential SVM solver in Matlab, a matrix
language especially suitable for the computations of the algorithm steps.

4 Hardware setup

One 2.4Ghz Pentium-based system running the Windows 2000 operating system
was used as the server for the system. Between one and three 2.4Ghz Pentium-
based systems running Linux 9 were used as clients. All machines had 1Gb
memory. An AFS server was used as the joint storage space.

The server ran one copy of Matlab that generated jobs for processing by the
clients. The jobs were represented as separate files. Any common variables (For
example, the training data) were saved in a different file and read only once
by each client application. Each client ran one or two copies of Matlab (Thus
there was a maximum of 6 clients working at a given time). Each client checked
the joint storage space and if a job for processing was available it read this job,
deleted it from the storage space, processed and returned the answer as a file in
the joint storage space.

After spawning all jobs for a particular command the server started collecting
the answers returned by the clients until all answers were collected.

As a comparison to parallel SVM, a copy of SVMlight [4] was run on the
server machine. SVMlight is a working set-type solver.

In all our experiments we used a radial-basis classifier with a radius of 1 and
a cost function (C') of 1.

5 Results

We used two of the largest databases from the UCI Repository [1] in our study.
The first database was the 20,000 sample Letter OCR database (17 attributes,
distinguishing between the letters A-M and N-Z). The second database con-
sisted of the first 200,000 examples from the Covertype dataset (54 attributes,
distinguishing between Lodgepole pine and all other cover types).

The parallel sequential SVM solver was compared to SVMlight solver by
training an SVM classifier using between 5% and 90% of the data (In steps of
5%) and testing on the remaining 10% of the data.

The relative difference in the test set classification rates between the SVM
classifiers found by the two methods, defined as |Csv amiight — CParaitet| /Craraticts
was less than 1%.

Figure 1 shows the time taken by the parallel SVM solver and by SVM-
light to convergence to a solution. The left figure shows the time taken for the



Covertype dataset, which is a non-separable dataset (As indicated by the classi-
fication error, which is in the order of 35%). The right figure shows the time to
convergence for the Letters dataset, which is seperable (The classification error
is in the order of 2%). Note that when the dataset is seperable both solvers
scale similarly, in contrast to the scaling performance when the dataset is un-
separable. In the latter case the parallel SVM solver scales significantly better
compared to SVMIight. The reason for this is that in non-separable data it is
increasingly difficult to hold the support vectors in memory as the number of
training points grows. This in turn causes Working Sets solvers to thrash, and
convergence (when reached) is extremely slow. In contrast the sequential SVM
solver is not limited by such problems, and thus its convergence curves are less
affected by the size of the dataset.

Note that the training of SVMlight was terminated after 70,000 training
points since the time to converge was prohibitively large. For example, training
an SVMlight classifier with 80,000 points (the next step in the figure) would
have taken approximately 7 hours according to the regression curves.

5
o

045

IS
S

04 | B

SvMlight
R?= 09903

o
o

035
SVMlight

R?=09334

w
=3

o

[

b
G

025

b
=]

o

=

o
L

015

Time to converge (1000 sec)

=}
L

Parallel
R = 09942

Time to converge (“1000 sec)

=1

Parallel
R*= 09849 005 4

0 2 4 6 g 10

1] 5 10 15 20
MNumber of training samples {*10000)

Mumber of training samples (*1000)

Figure 1: Convergence time of the parallel SVM solver compared to that of
the SVMlight solver. The left figure shows the time taken to converge when
classifying the non-separable Covertype dataset. The right figure shows the
time to converge when classifying the separable Letters dataset. Second-order
polynomial regression curves are shown on the graph, together with the R?
regression coefficients. These figures show that when the dataset is separable
there is little difference between the performance of the two solvers. However,
when the dataset is not separable, the parallel SVM solver scales significantly
better.

Figure 2 shows how the time to convergence of the parallel SVM classifier
depends on the number of clients. This figure demonstrates the time to converge
given 18,000 samples of the Letters dataset. We also measured these times when
training with 9,000 samples of the Letters dataset and 20,000 samples of the
Covertype dataset. Assuming that there is a certain processing time for each
sample and a constant read/write time of the data and the results, we fit a



regression model of the form

t = arw - NSub +apr - toup - NSub/NClients (5)

where t is the time to converge, Noyjents the number of active clients, Ng, the
number of sub-problems (i.e.: the number of blocks the data was divided into
for processing), arw the read/write regression parameter, and ap, the client
processing regression parameter. The parameter Ng,;, depends quadratically
on the number of training points. The results show that this model fits the
Letters data with R? = 0.89 (apw = 69.9,ap, = 9.66) and the Covertype
data with R? = 0.999 (apw = 96.7,ap, = 27.4). This suggests that such
a model is indeed applicable to the curve. The implications of this model is
that improvement in performance is limited by the read and write times of the
network as well as by the number of clients, which for the Letters database
saturates at about 4 clients.

700

600

Time to converge [sec]
- I
3 2z
3 3

w
=3
=]

200

100 L L L L L L L
1

Number of clients

Figure 2: Convergence time of the parallel SVM solver versus the number of
clients. This is the convergence time for the Letters dataset, using 18,000 sam-
ples. The dotted line shows the predicted values according to the model de-
scribed in the text.

The speedup of the sequential SVM is computed as the ratio of the time
needed to converge using a single processing element (Ts) to the time needed
to converge using p processing elements (T},),

Ts

r = 6
spr(p) T, (6)
Figure 3 shows the relative efficiency (ef f(p) = sp-(p)/p) for the three ex-
amined setups. This figure shows that the parallel algorithm is efficient on the



small number of processors measured. Notice how, for the separable Letters
dataset, as more training data is available, so does the efficiency reach a maxi-
mum at a higher number of processors. In contrast, efficiency does not change
significantly for the non-separable Covertype dataset.

Finally, we report the computation of Kuck’s function, defined as:

Fi(p) = ef £u(p)spe () = Sp;(p) (7)

This function reaches a maximum in the optimal number of processors for a
given problem. As one can see in Figure 4, this maximum is reached using 3-4
processing elements.

=)
©

Efficiency

o
)
T
L

041 B

—— Letters, 9000 points
0.2 | === Letters, 18000 points 1

Covertype, 20000 points

0 L
2

Number of clients

Figure 3: Relative efficiency versus the number of client processors.

6 Discussion

This paper presents a parallel implementation of the sequential support vector
solver suggested in [10]. In difference from the popular Working Set algorithms,
this algorithm solved the quadratic programming problem associated with SVMs
in batch mode. That is, the update to every Lagrange multiplier is computed
at each iteration. This overcomes the problems which occur in other support
vector solvers that arise when the set of support vectors is too large to be held
in memory.

The proposed implementation makes it possible to solve extremely large
classification and regression problems, which have so far been outside the scope
of SVMs. Currently problems with as many as 5,000,000 samples are handled
by the parallel sequential SVM solver.



—— Letters, 9000 points
- | === Letters, 18000 points o
Covertype, 20000 points

Kuck's function

Number of clients

Figure 4: Kuck’s function versus the number of client processors. Note that the
optimal number of processors is only achieved for one problem.

Our tests on two large datasets show that the time to converge with the
(parallel) sequential SVM solver is on-par with the popular SVMlight package
when the dataset is separable, and is significantly better than SVMlight when
the data is not separable (and thus requires many support vectors to be used
for the solution).

As we have demonstrated, the current speed of the parallel implementa-
tion is limited by both the network access times as well as by the number of
processing elements. Therefore more processing clients are not enough to im-
proving the processing speed of the algorithm. Better network nodes and better
management mechanisms are also essential.

References

[1] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[2] R. Collobert, S. Bengio, and Y. Bengiou. A parallel mixture of svms for
very large scale problems. In Advances in Neural Information Processing
Systems. MIT Press, 2002.

[3] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel
representations. Journal of Machine Learning Research, 2:243-264, 2001.

[4] T. Joachims. Making large-scale svm learning practical. In Advances in
Kernel Methods - Support Vector Learning, 1999.



[5]

[9]

[10]

T. Joachims. Optimizing search engines using clickthrough data. In Pro-
ceedings of the ACM Conference on Knowledge Discovery and Data Mining
(KDD), 2002.

J. Platt. Sequential minimal optimization: A fast algorithm for training
support vector machines. In Advances in Kernel Methods - Support Vector
Learning, pages 185—208, 1999.

B. Scholkopf and A.J. Smola. A tutorial on support vector regression. In
NeuroCOLT2 Technical Report NC2-TR-1998-030, 1998.

B. Scholkopf and A.J. Smola. Leaning with kernels: Support vector ma-
chines, reqularization, optimization, and beyond. MIT Press, Cambridge,
MA, USA, 2002.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-
Verlag, 1982.

S. Vijayakumar and S. Wu. Sequential support vector classifiers and re-
gression. In International conference on soft computing, pages 610-619,
1999.

G. Zanghirati and L. Zanni. A parallel solver for large quadratic programs
in training support vector machines. Parallel computing, 29:535-551, 2003.



