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Abstract. This paper describes a new discrete event simulation model built 
using a mathematical tool (Matlab) to investigate the simulation of the 
programming and the testing phases of a software development project. In order 
to show how the model can be used and to provide some preliminary concrete 
results, we give three examples of how this model can be utilized to examine 
the effect of adopting different strategies for coding and testing a new software 
system.  Specifically, we provide results of simulation runs intended to simulate 
the effects on the coding and testing phases of different testing strategies, the 
adoption of pair programming in an otherwise-unchanged process, and the 
automation of testing. The model source code is available for downloading at 
http://qp.research.ibm.com/concurrency_testing, and we invite researchers and 
practitioners to use and modify the model. 
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1   Introduction 

In many areas of software development, it is difficult to predict the effect of process 
changes. This is due in large measure to the impact of the scale of real-world 
development work. Mechanisms that work well in laboratory-sized experiments may 
or may not scale up to work in industrial-scale developments of large systems.  

An example of a mechanism that needs to work well in large-scale development is 
testing. Current approaches include testing each module as it is completed by the 
programmers, usually by a separate quality assurance team, formalized testing during 
programming by the programmers, and the test-first strategy espoused most notably 
by Beck in eXtreme Programming [1] of writing test harnesses code first and then 
writing programs specifically to pass those tests. Another approach to managing the 
resource applied to testing is to automate some or all of the tests, rather than having 
people run them. Whilst this demands a greater initial investment, subsequent runs are 
cheaper to perform. The question therefore arises as to when (if ever) the benefits of 
such an approach outweigh the costs.  
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One mechanism for investigating questions such as these is software process 
simulation. Here, an enactable, usually quantified, model is built of a process for 
software development. This model is then modified to reflect actual and/or proposed 
process changes, and the results compared with the initial case to determine whether 
the change seems to improve or degrade performance. We believe that simulation is 
the most effective way to investigate proposed process changes in large-scale 
developments; in view of the uncertainty of scaling up small-scale experiments, the 
only alternative is to conduct development cycles in parallel using each mechanism 
and compare the results, an approach which is not only costly but also risks 
introducing confounding factors such as users applying learning from one team to the 
work of the other. However, the results derived from simulation runs do not carry the 
same level of certainty as experiments under controlled conditions, in particular 
because the simulation model is inevitably a simplification of the actual process. 

A considerable body of literature describing the simulation of software processes 
has grown up over time, including a number of journal special issues (see for example 
[13, 17]). This has included work on software testing and quality assurance such as 
that of Madachy [9]. 

To investigate inter alia the effects on a software process of different approaches to 
testing, we have built a new discrete event simulation model using a mathematical tool 
(Matlab) and used the model to investigate the effect of adopting different strategies 
for coding and testing new software systems. This paper describes the simulation 
model itself. Our work also examines the effects of different testing strategies and pair 
programming on the completion times of the coding and testing phases. The Matlab 
code of our simulation model is available at http://qp.research.ibm.com/ 
concurrency_testing. We invite researchers to use and comment on the model, 
and to publish any improvements they make. 

The work presented here shows how simulation-based studies can examine 
software process behavior in cases where experiments or real-world testing are either 
difficult or expensive to perform or produce results that cannot be easily generalized. 
This is especially noted in software activities relating to large systems and/or over 
many releases of a software product.   

One characteristic of much of the published work in software process simulation is 
that the results of simulation exercises and a description of the model are usually 
presented but the model is typically not described completely, most often in respect of 
the omission of the underlying equations or the input data used for the runs presented. 
This may well be due to the size of the equations and/or data, but it does produce 
results that are difficult for other workers to check, and in models which researchers 
find difficulty in critiquing and improving. We have therefore decided to make the 
code of our model public and easily accessible, not only in the hope that the software 
testing community will make use of it in process optimization but also to allow other 
workers to critique it, and, we hope, to modify and improve it. 

We regard the simulation model itself as the main contribution of this work.  It is 
explicitly intended as a general-purpose simulation of the coding and testing phases of 
a software process which can be modified to reflect any required process changes; in 
this, it is closer in spirit to that of Wernick and Hall [17] than other software process 
models which have generally been developed to represent a single process 
environment or a specific process change. We also believe that its usefulness to 
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software engineers is enhanced by it having been written in an environment that is 
closer to the programming languages with which software developers will be familiar 
than the specific simulation environments used for other models.  The specific results 
we have obtained so far are of interest, but further validation work is required.  

2   The Simulation Model 

2.1   Outline of the Model 

In this section, we explain our simulation model for the programming phase of a 
project. We assume the design has been completed and we are simulating iterative 
cycles for the construction of the program; these cycles continue until the constructed 
program implements the design. 

Write Test 

Write code 

Run Test 

Check 
Size 

(b) Code building 
cycle: Test First 

Done

Debug 

Test /inspect 

Debug 

Check 
Quality 

(c) System test 

Done

Write code 

Test / Inspect 

Debug 

Check 
Size 

(a) Code building cycle : 
iterative 

Done  

Fig. 1. Simulation model structure 

We have designed the simulation model to reflect three phases of code production: 
code writing, testing, and debugging. First, the programmers develop the project 
during the code writing phase. Once this has been done, they move onto the 
test/inspect phase (unit, function or system after all the code is created) where they 
test and/or inspect the new, and possibly the existing, code. Next, they proceed to the 
debug/fix phase where they debug and repair all the bugs found during the test/inspect 
phase. In traditional development methods this cycle repeats until the functionality of 
the program is complete, as shown in Fig. 1(a). In newer agile methods, the cycle 
repeats itself many times because each iteration is very short. Once the program is 
complete, the system test cycles through the test/inspect and debug/fix phases until 
some pre-defined quality criterion is reached, as shown in Figure 1(c). Generally, this 
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criterion is determined pragmatically and typically reflects less than 100% freedom 
from bugs. The time dedicated to the code writing and testing phases is 
predetermined. The time dedicated to debugging depends on the number of bugs 
found and how long it takes to fix each one.  

The Test First approach, depicted in Figure 1(b), results in a slightly different 
simulation. Here the tests are created first, next the code is developed, and then the 
tests are executed and the code is debugged. This approach is usually characterized by 
very short code writing cycles.  

The simulation begins with the code writing phase, where objects corresponding to 
lines of code are actually created. These lines of code may or may not contain bugs; 
this is determined by a probability parameter. In the test/inspect phase, specific lines 
are tested/inspected and flaws may be found. In the debug/fix phase, time is spent 
identifying the bugs related to the flaws and some lines are replaced with new lines, 
which may, of course, contain new bugs. During the simulation, the program is created 
and improves hour by hour. In each simulated hour, one of the above activities is 
carried out, whether adding lines to the program, looking for bugs, or debugging and 
fixing the code. Each line of code is actually added as a discrete item to the simulation 
data so that when a specific location in the program is inspected for bugs, only the bugs 
that were inserted during the code writing phase are found. (We have not simulated the 
case of an incorrect review in which correct code is marked as a bug and changed.) In 
addition to explaining the above phases, this section covers the implementation of a 
bug to provide a more complete understanding of the simulation model.  

In the real world and in our model, the more complex the program, the more 
difficult it is to write, test, inspect, debug, and fix. In our simulation, for the sake of 
simplicity, we use the size of the code measured in lines of code as a proxy for code 
complexity and do not take into account the type of code (scientific, GUI, etc.). Type 
of code would impact on the number of bugs per line, the number of lines written per 
hour and possibly other parameters. Sometimes code complexity is not the only issue. 
For example, the time passing between the introduction of the bug and its being found 
is a major predictor of debug time [15].  

Every programming hour, the model adds #code_line_per_hour lines to the code 
base. This is not held as a count of lines; rather, an actual line object is created for 
every new program line. The number of lines of written code may be impacted by the 
complexity of the code (down), by the type of code (down or up), and by the 
programming language. For example, it is possible that GUI code is written at a much 
faster rate than control code. For each line created, the probability that it contains a 
bug is the variable bugs_per_line. The duration of the code writing phase, which 
determines the number of lines that are written, is a parameter of the simulation run 
and is not part of the phase definition. 

The test/inspect phase is composed of two distinct sub-phases: test writing and test 
execution. During test writing a number of tests are created. This number is equal to 
the length of the phase divided by time_to_create_test, corrected for complexity. 
During the test execution sub-phase, the new tests are executed in order of creation, 
along with as many old tests as possible. The simulation does not try to optimize the 
execution of specific new and old tests if there is not enough time, an important field 
of study in software testing [14]. However, such a module could be added to the 
simulation and its impact studied. Each test created has a number of parameters, some 
of which are used to find the lines of code actually tested by these tests. During 
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simulation, for each test there is a percentage of new lines and of old lines covered by 
it. Another option that is that the test will execute a specific number of tested lines. Of 
the possible program lines to be tested, some are chosen at random, based on the 
parameters of the specific simulation run. Another parameter is the execution time per 
test. Manual tests tend to have shorter creation times and longer execution time, while 
automated tests have a longer creation time and shorter execution time. 

The inspection sub-phase is very simple. The amount of code inspected is 
governed by the #lines_reviewed_per_hour parameter, modified to reflect code 
complexity. The number of lines reviewed is determined by the length of the phase. 

During the debug/fix phase, any flaw found in the test phase is traced to its cause 
and a bug is found. The debug time is influenced primarily by the duration between 
the time the bug was put in and the time it was found, corrected for complexity. This 
is one of the better documented phenomena and is a major reason for the Test First 
approach [15]. If the bug was found during the review, debug is not necessary 
because inspection finds root causes. 

In the fixing sub-phase a number of lines are modified to correct the bug. The 
number of lines modified may be influenced by the amount of time the bug was 
hiding in the code before its discovery. However, because we do not have hard 
evidence for this value, we have not included it in the simulation. The lines changed 
are in the vicinity of the bugs and are treated as new code that does not increase the 
program size. The time it takes to create this new code is hours_to_fix_bug. 

The time taken to insert, detect, and fix bugs is the heart of the simulation. Each 
bug is located in a specific line. For simplicity, we ignore multi-line bugs, which are 
more adept at evading inspection. Each bug has a probability of being discovered by a 
test, as indicated by prob_discovered_by_test, and a probability of being discovered by 
inspection, as indicated by prob_discovered_by_inspection. A bug has a second 
probability of being discovered by a test when the same test is re-executed. If it is a 
deterministic bug, this probability is zero or close to it (ignoring random tests). If it is 
a probabilistic bug (e.g. deadlock), the probability may be higher because the same 
input (test) might expose the bug, depending on interleaving that is usually beyond 
the tester’s control. This means that if regression testing is undertaken in deterministic 
code, it rarely finds old bugs (if they become exposed to the test due to code change), 
and mostly finds bugs introduced by modifications or bug fixes. 

2.2   Model Default Values  

A common use of a simulation model is to vary one or more parameter values and 
observe the impact of these changes. To provide a reliable base case from which to 
construct the investigations, it is first necessary to have well-supported default values 
for all parameters. These values are based on experimental documentation.  

The values we have used for model parameters are as follows: 

• #code_line_per_hour = 30 [2:207–237]  
• Bugs_per_line = 0.01 [7]   
• correction_for_time_since_placement = 1 + (time_since_ bug)/2000 – The increase in 

cost to fix bug due to code written between creation and fixing [3]  
• Hours_to_fix_bug – base 2, multiply by 2 if a month passed, multiply by 3 if two 

months passed [15:6–10] 
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• Bugs per lines of code after testing - no default as it is a simulation decision  
• Prob_discovered_by_inspection = 0.5 : Laitenberger and DeBaud [8] suggest that 

70% is achievable; we pessimistically set our rate to 50%.  
• #lines_reviewed_per_hour = 200 : from [8]; in our experience, these time frames 

differ greatly, but one hour for 200 lines is reasonable. 
• Cost of testing = 1.14 hour per one hundred lines to do unit testing. [2: 146]  
• Probability of finding bugs in test = .5 [15: 6–10] 

2.3   Sensitivity Analysis 

We have conducted a sensitivity analysis to determine the effect on the base case 
model of modifying each of the input parameters. This analysis showed that all the 
parameters cause the expected model output behaviour changes when their values are 
modified. Our initial expectations that the completion time for the program would 
increase with increasing the time to fix a bug, with increasing numbers of bugs per 
line and with greater time required to write tests, were confirmed in simulation runs.  
We expected the behaviour to be different with the number of lines written per 
hour.  If one writes very few lines per hour then the project time increases as 
programming takes more time.  If one writes many lines, more than can be tested, 
many of the bugs will be discovered too late and the debugging cost will 
increase.  We expected a ‘sweet spot’, an optimal value, for the number of lines 
written per hour, which for our simulation was found around 15 lines per hour as can 
be seen in Figure 2.  The important factor is not the number of lines per hour but  
 

 

Fig. 2. Total project time as a function of lines programmed per hour 
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testing keeping pace with coding.  If coding becomes more efficient then the testing 
phase has to become longer to deal with the extra amount of code generated. 

3   Sample Simulations 

In this section, we describe three scenarios to illustrate the way in which the 
simulation model can be employed to examine specific issues in software processes. 

3.1   Comparing Waterfall, Iterative, and Test First Approaches 

In the first simulation, we used the model to determine the optimal length of the 
coding phase between testing cycles. Many development paradigms are distinguished 
by this criterion. As our simulation runs the program is built in stages, each 
comprising a  program/test/debug cycle, until the entire program is complete. The 
system test is then performed until the desired quality is reached. There are 120K 
lines of code and a desired final bug count of approximately 50. The total bug count is 
1200 bugs for all methods, based on a probability of 1/100 that for all methods a bug 
is created in each line of code. 

In our simulation of the traditional waterfall model, all the code is created and then 
it is tested. Because functions are created and tested before integration, the simulation 
has long programming phases of 2000 programming hours between test phases. The 
testing cycles are much shorter in iterative models such as the Rational Unified 
Process [6]. We simulate this by having programming phases of 400 hours between 
testing phases. In eXtreme Programming [1] using the Test First approach, tests are 
written as the first step and the code is tested as soon as it is created.1 We simulate 
this approach by testing after every 100 hours of programming. In our simulation, the 
testing cycle is always 200 hours, divided evenly between the creation of new tests 
and test execution, regardless of how often it is performed. As a result, in our 
simulation of eXtreme Programming each testing phase is longer than the 
programming phase to which it is attached. This division of time is not based on data 
from the literature but represents a percentage of testing time between 10% and 66%. 
Our goal is not to claim that one is better than the other, but to show that with proper 
management, one can optimize the length of the coding phase. 

Before running the simulation, we estimated that the 2000 hour programming 
phase would be too long and result in a very long system test phase. We thought 100 
hours (simulating eXtreme Programming) would be too short, as most of the time is 
spent in testing. Our results showed that with our specific simulation parameters, 
eXtreme Programming (simulating only the Test First aspects) works best. We 
believe that the main reason for this result is that the debugging time is shortest when 
almost no time passes between when the bug is introduced until it is found by a test. 
In our simulation, we see that the debugging time is indeed very small for extreme 
programming. This accords with our intuitive reasoning that a developer presented 
with a bug as they write the code would find it easier to locate and fix. Figure 3 shows 
the fraction of the project time spent on programming. As expected, this number 
decreases with time as more time is spent on testing. Also, according to accepted 
                                                           
1 The implications for development timescales of the folding of design work into programming 

that occurs in extreme programming is not considered in this paper. 
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wisdom, the smaller the fraction of the time you initially spend on programming and 
the more you stress quality, the better your project will be. This can be seen when 
comparing eXtreme Programming with other paradigms. Less time is spent on 
programming initially but the progress is faster and the project finishes earlier. A 
counter-intuitive result, which can be seen in the long cycle (2000) line in Figure 3, is 
that the proportion of time spent on programming rises significantly toward the end of  
 

 

Fig. 3. Fraction of the project spent on programming. Each curve denotes a different length of 
the programming phase. 

 

Fig. 4. System size vs. programming time for three approaches to programming. Each curve 
denotes a different length of the programming phase. 
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the project. Clearly, when the quality is lower, more time is spent on bug fixing (a 
programming task) toward the end of the project. Figure 4 shows the time taken to 
complete the project, in hours. The actual results are: 

• Waterfall: 68600 hours to complete, 20800 hours to reach system test 
• Iterative: 43800 hours to complete, 30000 hours to reach system test 
• Test First: 27300 hours to complete, 26400 hours to reach system test 

As expected, with a waterfall process, developers reach the system testing phase 
faster than in the iterative model; however, the system testing phase is longer and as a 
result the total time is longer. The unexpected (for some of us) result was that the Test 
First approach is so effective that not only is the system testing phase very short, but it 
is actually reached faster than by the iterative process. 

Because this simulation runs until the bug count reaches a specified value, it is 
impossible to compare it with experiments where remaining bugs are counted at the 
end of the experimental procedure. In an experiment with programmers working 
under laboratory conditions, George and Williams [4] found that a Test First approach 
resulted in code that passed 18% more black box tests but took 16% more time. We 
believe that George and Williams’ subjects are likely to have reached the same bug 
count as the waterfall users in less time. This result is reflected in our simulation, 
although our simulation shows a greater reduction in time than George and Williams’ 
results might suggest. 

3.2   Evaluating Pair Programming 

Pair programming, as defined in http://en.wikipedia.org/wiki/Pair_programming, is a 
practice that requires two software engineers to participate in a combined 
development effort at one workstation. Each member performs the action the other is 
 

 

Fig. 5. Program lines vs. programming type for a large project 
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Fig. 6. Program lines vs. programming type for a small project 

not currently doing.  For example, while one types in unit tests the other thinks about 
the class that will satisfy the test . The person doing the typing is known as the driver 
while the person guiding is known as the navigator. It is often suggested that the two 
partners switch roles at least every half-hour.  In this section we would like to show 
how our simulation model can evaluate the utility of pair programming. 

We estimated that in pair programming the code generation rate would be halved, 
since two people are writing the same amount of code previously written by one 
person. Studies have been done on the amount of code produced by pairs [18], but the 
data relate to the productivity of the project, which for us is output and not input. 
While halving output is rather harsh, we have chosen this number as a lower bound on 
the basis that, if pair programming with this value is beneficial, it would be even more 
beneficial with a more optimistic productivity value. We also simulated a reduction in 
the number of bugs generated since two pairs of eyes are looking for bugs, for which 
we used a rate of 300/356 suggested by Williams et al. [18].  

Our simulation showed that the gain or loss in productivity depends on the project 
size. In larger projects, as shown in Figure 5, careful programming is highly rewarded — 
not only is the total project time faster but the system test phase is reached earlier due to 
the decreased amount of debugging. For smaller projects, which have been studied more 
in the literature (e.g. [18]), there is a productivity cost for pair programming. This can be 
seen in Figure 6 where the arrow indicates the end of the project for single programmers. 
Hence, while the jury may still be out on the question of whether pair programming 
improves productivity for smaller projects, our simulation shows that the advantages are 
quite clear for larger projects. Our findings differ from those obtained buy Williams et al. 
in small-scale experiments [18], where a gain from adopting pair programming was 
found even for small projects. It is possible that our simulation of an industrial process 
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differs from the experimental protocol of Williams et al. which was based on students’ 
assignments, or results from their the use of student programmers. 

Our results suggest that the pros and cons of adopting pair programming for any 
particular project depends on a number of factors not necessarily captured in small-
scale, single cycle experiments such as those of Williams et al. [18]. In this particular 
they parallel the simulation-based work of Wernick and Hall [16]. In the latter case, 
the effect of adopting pair programming on long-term maintainability of a software 
system is suggested as an element that needs to be quantified as part of a cost/benefit 
analysis; here, system size is another aspect to take into account. 

Our method of implementing the pair programming paradigm described above can 
also be viewed as equivalent to early testing, as fewer bugs are introduced.  In our 
simulation, there is a heavy penalty for late debugging, as is consistent with the 
literature.  In conditions where such a heavy penalty is not relevant, the simulation 
results will be different.   

3.3   Evaluating Test Automation 

Using our simulation, we have investigated whether it is worthwhile to automate tests.  
We simulated automated tests as tests that cost five times as much to design, compared 
with typical industry figures of 3 to 10 [10] but can be executed at minimal human 
resource cost. We have not allowed for the maintenance cost of automated tests, which 
can be much higher than for manual tests.  In our simulation, when a test is executed 
more than once, the only bugs it can find are the bugs that were introduced to the code 
after the previous run (due to bug fixes).  Onoma et al. [12] observe that the main 
reason stated for automating testing is to ensure that newly introduced bugs are found 
as soon as possible after their introduction to the system code. 

Our model was modified to simulate the partial automation of testing adopted in 
test-driven development: “With TDD, all major public classes of the system have a 
corresponding unit test class to test the public interface, that is, the contract of that 
class … with other classes (e.g. parameters to method, semantics of method, pre- and 
post-conditions to method).” ([11]; our emphasis).  Automating the tests results in a 
number of changes that impact on the simulation results, some of them in a non-
intuitive way. Creating an automated test takes longer then creating a manual one as 
programming effort is involved.  This means that, since in the simulation the resource 
allocated to each testing period is fixed, there are initially fewer tests performed on 
the code.   

One surprising result of our simulation runs is that when automated tests are used 
programming proceeds faster.  This is due to the fact that fewer bugs are found 
because fewer tests are executed and a lower percentage of the time is spent on 
debugging.  However, these bugs still need to be located and fixed before the software 
is released, so later, during the system tests, more time is spent fixing the bugs. 
Another obvious trade-off is between running many tests a few times and running 
fewer tests many times. Usually, one will not choose one extreme. i.e. automating all 
tests, over the other, but will choose to automate a number of tests and perform the 
rest manually.  Marick [10] states that “The cost of automating a test is best measured  
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by the number of manual tests it prevents you from running and the bugs it will 
therefore cause you to miss”.  He also states that “A test is designed for a particular 
purpose: to see if some aspects of one or more features work. When an automated test 
that’s rerun finds bugs, you should expect it to find ones that seem to have nothing to 
do with the test’s original purpose. Much of the value of an automated test lies in how 
well it can do that.”  The cost of developing automated tests suggests that some tests 
should be automated and some should not.  In our model we provide support for the 
simulation of different mixes of automated and manual tests. 

 

Fig. 7. Performance of automated and manual testing 

In the scenario presented in Figure 7, given the parameter values we have used, 
i.e., an automated test is five times more expansive to write but have no execution 
cost, we see the benefit gained from automation is outweighed by the fact that fewer 
tests are initially created; while system test was reached earlier with automated testing 
(12,500 compared to 24,404 hours) because less unique tests were performed, the 
project was completed much later (60,622 compared to 38,565 hours).  

Maximilien and Williams [11] have reported the results of an industrial case study 
using pre-written test cases for unit testing.  The IBM test-driven development process 
examined in their report resulted in an error rate reduced by 50% and work completed 
on time. This was achieved with automated test cases covering 80% of the “important’ 
classes” [11: 566]. A question that needs to be studied is whether the benefits were 
gained from the automation or from the investment in unit testing.  Our simulation 
points to the latter, and poses a question regarding the use of tools like JUnit and the test  
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automation of unit testing in eXtreme Programming.  Is the practice of creating 
automated tests for unit testing efficient because of, or despite, the automation aspects? 
Maybe it is even more efficient to do these tests without the automation. 

4   Summary 

The goal of our work has not been to claim that Test First, pair programming and 
manual testing are superior to the alternatives; rather it is to show how the open-
source simulation model described in this paper may be used to evaluate such claims.  
The research presented here demonstrates how the model can be used to evaluate 
software process changes, in this case testing the relative merits of different testing 
and programming paradigms. Using the simulation, we have obtained results which 
suggest that even though these approaches are justified in some situations, they may 
not be valid for all software development projects.  For smaller programs, neither Test 
First nor pair programming seem always to be beneficial; test automation may be 
preferable when much larger programs are created. These results provide some insight 
when reading opinions claiming that the results of such process changes are always 
positive.  To generalize on this observation, our simulation model can be used to 
predict the impact of proposed improvements on project development before these 
changes are tested in real projects. 

Some of our simulation results can be directly attributed to the fact that the cost of 
finding and fixing a bug rises dramatically when a large amount of code has been 
written between the introduction of the bug and its discovery.  If techniques such as 
delta debugging [5] which reduce the cost of searching for the bug become more 
prevalent then current simulation runs will have to be revisited.   

From the experiments conducted with our simulation model, we reach a number of 
conclusions. First, testing early is important; in fact, the Test First approach outperforms 
other testing strategies. Second, pair programming may or may not improve project 
timescales, depending on the size of the system being developed. Under simulated 
conditions, larger systems perform better and smaller systems perform worse than in 
non-pair programming. Third, automated testing is sometimes over-rated; however, 
further discussion of this conclusion is beyond the scope of this paper. 

5   Future Work 

In addition to refining our simulation model and its outputs to reconcile differences 
from the published results described above, we envisage that our simulation can be 
extended or amended to address the following: 

• The implications of the need to develop test code for automated testing.  In 
modern testing, the testing code is itself a development project.  We need to 
model test creation as a project with its own bugs and costs. This is a fairly 
natural extension of the model in which two related projects are developed 
concurrently. 

• The effect of adopting from agile methodologies techniques other than the pair 
programming, automated testing and Test First examples described above. 
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• Evaluating the effect on software costs of varying the sizes of the components 
and interface. This would include an examination of definitions of the ‘size’ of a 
component more sophisticated than the number of lines of code it contains, 
reflecting inter alia the complexity of the interfaces it uses (including the code 
behind that interface) and the type of code (e.g. control or GUI) being developed. 
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