
 while(dW > 1e-15),
   %Choose a sample randomly
   i  = randperm(L);
   phi = train_features(:,i(1));
   net_k = W'*phi;
   y_star= find(net_k == max(net_k));
   y_star= y_star(1);

   %Just in case two have the same weights!
   oldW = W;
   W  = W + eta*phi*gamma(win_width*abs(net_k - y_star))';
   W  = W ./ (ones(D,1)*sqrt(sum(W.^2)));
   eta = eta * deta;
   dW  = sum(sum(abs(oldW-W)));

   iter = iter + 1;   

if (plot_on == 1),
      %Assign each of the features to a center
      dist        = W'*train_features;
      [m, label]  = max(dist);
      centers     = zeros(D,Nmu);
      for i = 1:Nmu,
         in = find(label == i);
         if ~isempty(in)
            centers(:,i) = mean(train_features(:,find(label==i))')';
         else
            centers(:,i) = nan;
         end
      end
      plot_process(centers)
   end
   
   if (iter/100 == floor(iter/100)),
      disp(['Iteration number ' num2str(iter)])
   end
   
end

%Assign a weight to each feature
label = zeros(1,L);
for i = 1:L,
   net_k  = W'*train_features(:,i);
   label(i) = find(net_k == max(net_k));
end

%Find the target for each weight and the new features
targets  = zeros(1,Nmu);
features = zeros(D, Nmu);
for i = 1:Nmu,
   in    = find(label == i);
   if ~isempty(in),
      targets(i)  = sum(train_targets(in)) / length(in) > .5;
      if length(in) == 1,
         features(:,i) = train_features(:,in);
      else
         features(:,i)  = mean(train_features(:,in)')';
      end
   end
end

David G. Stork
Elad Yom-Tov

Computer Manual
in MATLAB

to accompanyPattern
Classification 



Appendix to the 
Computer Manual in MATLAB 

to accompany 
Pattern Classification (2nd ed.)

David G. Stork and Elad Yom-Tov



By using the Classification toolbox you agree to the following 
licensing terms:

NO WARRANTY
THERE IS NO WARRANTY FOR THE PROGRAMS, TO 

THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT 
WHEN OTHERWISE STATED IN THE WRITING THE 
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE 
THE PROGRAMS “AS IS” WITHOUT WARRANTY OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT 
NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND 
PERFORMANCE OF THE PROGRAMS ARE WITH YOU.  
SHOULD THE PROGRAMS PROVE DEFECTIVE, YOU ASSUME 
THECOST OF ALL NECESSARY SERVICING, REPAIR OR 
CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW 
OR AGREED TO IN WRITING WILL ANY COPYRIGHT 
HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR 
REDISTRIBUTE THE PROGRAMS, BE LIABLE TO YOU FOR 
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, 
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT 
OF THEUSE OR INABILITY TO USE THE PROGRAM 
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA 
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY 
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM 
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH 
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES.
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  7

This Appendix is a pre-publication version to be included in the furthcoming ver-
sion of the Computer Manual to accompany Pattern Classification, 2nd Edi-
tion. It includes short descriptions of the programs in the classification toolbox 
invoked directly by users. 

Additional information and updates are available from th e authors’ web site at 
http://www.yom-tov.info

We wish you the best of luck in your studies and research!

David G. Stork
Elad Yom-Tov

Preface
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APPENDIX Program descriptions
Below are short descriptions of the programs in the classification toolbox invoked directly by users.  This listings 
are organized by chapter in Pattern Classification, and in some cases include pseudo-code.  Not all programs 
here appear in the textbook and not every minor variant on an algorithm in the textbook appears here.  While 
most classification programs take input data sets and targets, some classification and feature selection programs 
have associated additional inputs and outputs, as listed.  You can obtain further specific information on the algo-
rithms by consulting Pattern Classification and information on the MATLAB code by using its help com-
mand.
           9



 10 Program descriptions
Chapter 2

Marginalization 

Function name: Marginalization

Description:  

Compute the marginal distribution of a multi-dimensional histogram or distribution as well as the marginal prob-
abilities for test patterns given the “good” features.

Syntax: 

      predicted_targets = marginalization(training_patterns, training_targets, test_patterns, parameter vector);

Parameters:  

1. The index of the missing feature.

 2. The number of patterns with which to compute the marginal.
Programs for Chapter 2
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Minimum cost classifier

Function name: minimum_cost

Description:  

Perform minimum-cost classification for known distributions and cost matrix λij.

Syntax: 

      predicted_targets = minimum_cost(training_patterns, training_targets, test_patterns, parameter vector);

Parameter:  

The cost matrix λij.
Programs for Chapter 2



 12 Program descriptions
Normal Density Discriminant Function

Function name: NNDF

Description:  

Construct the Bayes classifier by computing the mean and d-by-d covariance matrix of each class and then use 
them to construct the Bayes decision region.

Syntax: 

      predicted_targets = NNDF(training_patterns, training_targets, test_patterns, parameter vector);

Parameters:  

The discriminant function (probability) for any test pattern.
Programs for Chapter 2
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Stumps

Function name: Stumps

Description:  

Determine the threshold value on a single feature that will yield the lowest training error. This classifier can be 
thought of as a linear classifier with a single weight that differs from zero.

Syntax: 

      predicted_targets = Stumps(training_patterns, training_targets, test_patterns, parameter vector);

      [predicted_targets, weights] = Stumps(training_patterns, training_targets, test_patterns, parameter vector);

Parameter:

Optional: A weight vector for the training patterns.

Additional outputs: 

The weight vector for the linear classifier arising from the optimal threshold value.
Programs for Chapter 2



 14 Program descriptions
Discrete Bayes Classifier 

Function name: Discrete_Bayes

Description:  

Perform Bayesian classification on feature vectors having discrete values.  In this implementation, discrete fea-
tures are those that have no more than one decimal place.  The program bins the data and then computes the prob-
ability of each class. The program then computes the classification decision based on standard Bayes theory.

Syntax:

      predicted_targets = Discrete_Bayes(training_patterns, training_targets, test_patterns, parameter vector);

Parameters:

None
Programs for Chapter 2
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Multiple Discriminant Analysis

Function name: MultipleDiscriminantAnalysis

Description:  

Find the discriminants for a multi-category problem. The discriminant maximizes the ratio of the between-class 
variance to that of the in-class variance. 

Syntax: 

     [new_patterns, new_targets] = MultipleDiscriminantAnalysis(training_patterns, training_targets);

     [new_patterns, new_targets, feature_weights] = MultipleDiscriminantAnalysis(training_patterns, training_targets);

Additional outputs:  

The weight vectors for the discriminant boundaries.
Programs for Chapter 2



 16 Program descriptions
Bhattacharyya

Function name: Bhattacharyya

Description:  

Estimate the Bhattacharyya error rate for a two-category problem, assuing Gaussianity. The bound is given by:

Syntax: 

              error_bound = Bhattacharyya(mu1, sigma1, mu2, sigma2, p1);

Input variables:

1. mu1, mu2          - The means of class 1 and 2, respectively.

2. sigma1, sigma2  - The covariance of class 1 and 2, respectively.

3. p1                       - The probability of class 1.

k 1
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Chernoff

Function name: Chernoff

Description:  

Estimate the Chernoff error rate for a two-category problem. The error rate is computed through the following 
equation:

Syntax: 

              error_bound = Chernoff(mu1, sigma1, mu2, sigma2, p1);

Input variables:

1. mu1, mu2          - The means of class 1 and 2, respectively.

2. sigma1, sigma2  - The covariance of class 1 and 2, respectively.

3. p1                       - The probability of class 1.

minβ e
β 1 β–( )

2----------------- µ2 µ– 1( )T βΣ1 1 β–( )Σ2+[ ] 1– µ2 µ– 1( ) 1
2---

βΣ1 1 β–( )Σ2+
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1 β–---------------------------------------ln+–

⎩ ⎭
⎨ ⎬
⎧ ⎫
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 18 Program descriptions
Discriminability 

Funciton name: Discriminability

Description:  Compute the discriminability d’ in the Receiver Operating Characteristic (ROC) curve.

Syntax: 

              d_tag = Discriminability(mu1, sigma1, mu2, sigma2, p1);

Input variables:

1. mu1, mu2          - The means of class 1 and 2, respectively.

2. sigma1, sigma2  - The covariance of class 1 and 2, respectively.

3. p1                       - The probability of class 1.
Programs for Chapter 2
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Chapter 3

Maximum-Likelihood Classifier

Function name: ML

Description: 

Compute the maximum-likelihood estimate of the mean and covariance matrix of each class and then uses the 
results to construct the Bayes decision region. This classifier works well if the classes are uni-modal, even when 
they are not linearly seperable.

Syntax:

      predicted_targets = ML(training_patterns, training_targets, test_patterns, []);
Programs for Chapter 3



 20 Program descriptions
Maximum-Likelihood Classifier assuming Diagonal Covariance Matrices

Function name: ML_diag

Description: 

Compute the maximum-likelihood estimate of the mean and covariance matrix (assumed diagonal) of each class 
and then uses the results to construct the Bayes decision region. This classifier works well if the classes are uni-
modal, even when they are not linearly seperable.

Syntax:

      predicted_targets = ML_diag(training_patterns, training_targets, test_patterns,  []);
Programs for Chapter 3
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Gibbs

Function name: Gibbs

Description:  

This program finds the probability that the training data comes from a Gaussian distribution with known param-
eters, i.e., P(D|θ).  Then, using P(D|θ), the program samples the parameters according to the Gibbs method, 
and finally uses the parameters to classify the test patterns.

Syntax:

      predicted_targets = Discrete_Bayes(training_patterns, training_targets, test_patterns, input parameter);

Parameter:  

Resolution of the input features (i.e., the number of bins).
Programs for Chapter 3



 22 Program descriptions
Fishers Linear Discriminant

Function name: FishersLinearDiscriminant

Description:  

Computes the Fisher linear discriminant for a pair of distributions. The Fisher linear discriminant attempts to 
maximize the ratio of the between-class variance to that of the in-class variance. This is done by reshaping the 
data through a linear weight vector computed by the equasion:

where SW is the in-class (or within-class) scatter matrix.

Syntax:

      [new_patterns, new_targets] = FishersLinearDiscriminant(training_patterns, training_targets, [], []);

      [new_patterns, new_targets, weights] = FishersLinearDiscriminant(training_patterns, training_targets, [], []);

Additional outputs:  

The weight vector for the linear classifier.

w SW
1– m1 m2–( )=
Programs for Chapter 3
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Local Polynomial Classifier

Function name: Local_Polynomial

Description: This nonlinear classification algorithm works by building a classifier based on a local subset of 
training points, and classifies the test points according to those local classifiers.  The method randomly selects a 
predetermined number of the training points and then assign each of the test points to the nearest of the points so 
selected.  Next, the method builds a logistic classifier around these selected points, and finally classifies the 
points assigned to it.

Syntax: 

      predicted_targets = Local_Polynomial(training_patterns, training_targets, test_patterns, input parameter);

Input parameter:  

Number of (local) points to select for creation of a local polynomial or logistic classifier.
Programs for Chapter 3



 24 Program descriptions
Expectation-Maximization

Function name: Expectation_Maximization

Description:  

Estimate the means and covariances of component Gaussians by the method of expectation-maximization.

Pseudo-code:

begin initialize θ0, T, 

do 

E step:  compute 

M step:  

until 

return  

end

Syntax: 

      predicted_targets = EM(training_patterns, training_targets, test_patterns, input parameters);

      [predicted_targets, estimated_parameters] = EM(training_patterns, training_targets, test_patterns, input parameters);

i 0←

i i 1+←

Q θ θ; i( )

θi 1+ maxθQ θ θ; i( )arg←

Q θi 1+ θ;
i

( ) Q θi θ;
i 1–

( ) T≤–

θ̂ θi 1+←
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Input parameters:  

The number of Gaussians for each class.

Additional outputs:  

The estimated means and covariances of Gaussians.

Example:

These figures show the results of running the EM algorithm with different parameter values. The left figure 
shows the decision region obtained when the wrong number of Gaussians is entered, while the right shows the 
decision region when the correct number of Gaussians in each class is entered. 
Programs for Chapter 3



 26 Program descriptions
Multivariate Spline Classification

Function name: Multivariate_Splines

Description:  

This algorithm fits a spline to the histogram of each of the features of the data. The algorithm then selects the 
spline that reduces the training error the most, and computes the associated residual of the prediction error.  The 
process iterates on the remaining features, until all have been used. Then, the prediction of each spline is evalu-
ated independently, and the weight of each spline is computed via the pseudo-inverse. This algorithm is typically 
used for regression but here is used for classification.

Syntax:

      predicted_targets = Multivariate_Splines(training_patterns, training_targets, test_patterns, input parameters);

Input parameters:  

1. The degree of the splines.

2. The number of knots per spline.
Programs for Chapter 3
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Whitening transform

Function name: Whitening_transform

Description:  

Apply the whitening transform to a d-dimensional data set.  The algorithm first subtracts the sample mean from 
each point, and then multiplies the data set by the inverse of the square root of the covariance matrix.

Syntax:

     [new_patterns, new_targets] = Whitening_transform(training_patterns, training_targets, [], []);

     [new_patterns, new_targets, means, whiten_mat] = Whitening_transform(training_patterns, training_targets, [], []);

Additional outputs:  

1. The whitening matrix.

2.  The means vector.
Programs for Chapter 3



 28 Program descriptions
Scaling transform

Function name: Scaling_transform

Description:  

Standardize the data, that is, transforms a data set so that it has zero mean and unit variance along each coordi-
nate. This scaling is recommended as preprocessing for data presented to a neural network classifier.

Syntax:

     [new_patterns, new_targets] = Scaling_transform(training_patterns, training_targets, [], []);

     [new_patterns, new_targets, means, variance_mat] = Scaling_transform(training_patterns, training_targets, [], []);

Additional outputs:  

1. The variance matrix.

2. The means vector.
Programs for Chapter 3
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Hidden Markov Model Forward Algorithm

Function name: HMM_Forward

Description:  

Compute the probability that a test sequence VT was generated by a given hidden Markov model according to the 
Forward algorithm. Note: This algorithm is in the “Other” subdirectory.

Pseudo-code:

begin initialize , aij, bjk, visible sequence VT, αj(0)

for 

 until t=T

return  for the final state

end

Syntax:

[Probability_matrix, Probability_matrix_through_estimation_stages] = 
                      HMM_Forward(Transition_prob_matrix, Output_generation_mat, Initial_state, Observed output sequence);

t 0←

t t 1+←

βi t( ) βj t 1+( )aijbjkv t 1+( )

j 1=

c

∑←

P VT( ) α0 T( )←
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 30 Program descriptions
Hidden Markov Model Backward Algorithm

Function name: HMM_Backward

Description:  

Compute the probability that a test sequence VT was generated by a given hidden Markov model according to the 
Backward algorithm.  Learning in hidden Markov models via the Forward-Backward algorithm makes use of 
both the Forward and the Backward algorithms. Note: This algorithm is in the “Other” subdirectory.

Pseudo-code:

begin initialize βj(T), , aij, bjk, visible sequence VT

for 

 until t=1

return  for the known initial state

end

 

Syntax:

[Probability_matrix, Probability_matrix_through_estimation_stages] = 
                      HMM_Backward(Transition_prob_matrix, Output_generation_mat, Final_state, Observed output sequence);

t T←

t t 1–←

βi t( ) βj t 1+( )aijbjkv t 1+( )

j 1=

c

∑←

P VT( ) βi 0( )←
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Forward-Backward Algorithm

Function name: HMM_Forward_Backward

Description:  

Estimate the parameters in a hidden Markov model based on a set of training sequences. Note: This algorithm is 
in the “Other” subdirectory.

Pseudo-code:

begin initialize aij, bjk, training sequence VT, convergence criterion θ, 

do  

compute  from a(z-1) and b(z-1)

compute  from a(z-1) and b(z-1)

 until 

return , 

end

Syntax:

[Estimated_Transition_Probability_matrix, Estimated_Output_Generation_matrix] = 
                      HMM_Forward_backward(Transition_prob_matrix, Output_generation_mat, Observed output sequence);

z 0←

z z 1+←

â z( )

b̂ z( )

aij z( ) âij z 1–( )←

bjk z( ) b̂jk z 1–( )←

maxi j k, , aij z( ) a– i j z 1–( ) bjk z( ) bjk z 1–( )–, θ<

aij aij z( )← bjk bjk z( )←
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 32 Program descriptions
Hidden Markov Model Decoding

Function name: HMM_Decoding

Description:  

Estimate a highly likely path through the hidden Markov model (trellis) based on the topology and transition 
probabilities in that model. Note: This algorithm is in the “Other” subdirectory.

Pseudo-code:

begin initialize  ,  

for  

for 

 

until  j = c

Append ωj’ to Path

until  t = T
return Path

end

Syntax:

Likely_sequence = HMM_Forward(Transition_prob_matrix, Output_generation_mat, Initial_state, Observed output 
sequence);

Path …{ }← t 0←

t t 1+←

j j 1+←

αj t( ) bjkv t( ) αi t 1–( )aij

i 1=
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Chapter 4

Nearest-Neighbor Classifier

Function name: Nearest_Neighbor

Description:  

For each of the test examples, the nearest k neighbors from training examples are found, and the majority label 
among these are given as the label to the test example. The number of nearest neighbors determines how local 
the classifier is. If this number is small, the classifier is more localized. This classifier usually results in reason-
ably low training error, but it is expensive computationally and memory-wise. 

Syntax:

      predicted_targets = Nearest_Neighbor(training_patterns, training_targets, test_patterns, input parameter);

Input parameters:  

Number of nearest neighbors, k.
Programs for Chapter 4



 34 Program descriptions
Nearest-Neighbor Editing

Function name: NearestNeighborEditing

Description:  

This algorithm searches for the Voronoi neighbors of each pattern. If the labels of all the neighbors are the same, 
the pattern in discarded. The MATLAB implementation uses linear programming to increase speed. This algo-
rithm can be used for reducing the number of training data points.

Pseudo-code:

begin initialize ,  set,  prototypes

construct the full Voronoid diagram of D

do ; for each prototype 

find the Voronoi neighbors of 

 if any neighbor is not from the same class as  then mark 

until j = n
discard all points that are not marked
construct the Voronoi diagram of the remaining (marked) prototypes

end

Syntax:

      [new_patterns, new_targets] = NearestNeighborEditing(training_patterns, training_targets, [], []);

j 0← D data← n num←

j j 1+← xj'

xj'

xj' xj'
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Store-Grabbag Algorithm

Function name: Store_Grabbag

Description: 

The store-grabbag algorithm is a modification of the nearest-neighbor algorithm. The algorithm identifies those 
samples in the training set that affect the classification, and discards the others.

Syntax:

      predicted_targets = Store_Grabbag(training_patterns, training_targets, test_patterns, input parameter);

Input parameter:   

Number of nearest neighbors, k.
Programs for Chapter 4



 36 Program descriptions
Reduced Coloumb Energy 

Function name: RCE

Description:  Create a classifier based on a training set, maximizing the radius around each training point (up to 
λmax) yet not misclassifying other training points.

Pseudo-code:

Training

begin initialize , patterns, param,  radius

do  

 (train weight)

 (find nearest point not in ωi)

(set radius)

 if  then 

until j = n 
end

j 0← n num← ε small← λm max←

j j 1+←

wij xi←

x̂ minx ωi∉arg D x x',( )←

λj min D x̂ x',( ) ε– λm,←

x ωk∈ ajk 1←
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Classification

begin initialize , , pattern,  

do  

if then 

until j = n

 if  label of all is the same then return label of all 

else return “ambiguous” label
end

Syntax:

      predicted_targets = RCE(training_patterns, training_targets, test_patterns, input parameter);

Input parameters:  

The maximum allowable radius, λmax.

j 0← k 0← x test← Dt …{ }←

j j 1+←

D x xj',( ) λj< Dt Dt x'j∪←

x'j Dt∈ xk Dt∈
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 38 Program descriptions
Parzen Windows Classifier

Function name: Parzen

Description:  

Estimate a posterior density by convolving the data set in each category with a Gaussian Parzen window of scale 
h. The scale of the window determines the locality of the classifier such that a larger h causes the classifier to be 
more global.

Syntax:

     predicted_targets = Parzen(training_patterns, training_targets, test_patterns, input parameter);

Input parameter:  

Normalizing factor for the window width, h.
Programs for Chapter 4
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Probabilistic Neural Network Classification

Function name: PNN

Description:  

This algorithm trains a probabalistic neural network and uses it to classify test data. The PNN is a parallel imple-
mentation of the Parzen windows classifier. 

Pseudo-code

begin initialize , 

do 

 if aki = 1 then   

return   

end

Syntax: 

     predicted_targets = PNN(training_patterns, training_targets, test_patterns, input parameter);

Input parameter:

The Gaussian width, .

k 0← x test pattern←

k k 1+←

netk wk
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gi gi← netk 1–( ) σ2⁄[ ]exp+
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 40 Program descriptions
Chapter 5

Basic Gradient Descent 

Function name: BasicGradientDescent

Description:  

Perform simple gradient descent in a scalar-valued criterion function J(a).

Pseudo-code:

begin initialize a, threshold θ, η(.), 

do  

 

 until  

return a
end

Syntax:

min_point = gradient_descent(Initial search point, theta, eta, function to minimize)

Note: The function to minimize must accept a value and return the function’s value at that point.

k 0←

k k 1+←

a a η k( ) J a( )∇–←

η k( ) J a( )∇ θ<
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Newton Gradient Descent

Function name: Newton_descent

Description:  

Perform Newton’s method for gradient descent in a scalar-valued criterion function J(a), where the Hessian 
matrix H can be computed.

Pseudo-code:

begin initialize a, threshold θ
do

 

 until  

return a
end

Syntax:

min_point = Newton_descent(Initial search point, theta, function to minimize)

Note: The function to minimize must accept a value and return the function’s value at that point.

a a H 1– J a( )∇–←

H 1– J a( )∇ θ<
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 42 Program descriptions
Batch Perceptron

Function name: Perceptron_Batch

Description:  

Train a linear Perceptron classifier in batch mode.

Pseudo-code:

begin initialize a, criterion θ, η(.), 

do  

 

 until  

return a
end

Syntax:

      predicted_targets = Perceptron_Batch(training_patterns, training_targets, test_patterns, input parameters); 

      [predicted_targets, weights] = Perceptron_Batch(training_patterns, training_targets, test_patterns, input parameters);

      [predicted_targets, weights, weights_through_the_training] = Perceptron_Batch(training_patterns, training_targets,
                                                                                                                           test_patterns, input parameters);

k 0←

k k 1+←

a a η k( ) y
y Yk∈
∑+←

η k( ) y
y Y∈
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Input parameters:  

1. The maximum number of iterations.

2. The convergence criterion.

3. The convergence rate.

Additional outputs:  

1. The weight vector for the linear classifier. 

2. The weights throughout learning.
Programs for Chapter 5



 44 Program descriptions
Fixed-Increment Single-Sample Perceptron

Function name: Perceptron_FIS

Description: 

This algorithm attempts to iteratively find a linear separating hyperplane. If the problem is linear, the algorithm is 
guaranteed to find a solution. During the iterative learning process the algorithm randomly selects a sample from 
the training set and tests if that sample is correctly classified. If not, the weight vector of the classifier is updated. 
The algorithm iterates until all training samples are correctly classified or the maximal number of training itera-
tions is reached.

Pseudo-code:

begin initialize a, 

do 

 if yk is misclassified by a then  

 until all patterns properly classified
return a

end

Syntax:

     predicted_targets = Perceptron_FIS(training_patterns, training_targets, test_patterns, input parameter); 

     [predicted_targets, weights] = Perceptron_FIS(training_patterns, training_targets, test_patterns, input parameter); 

k 0←

k k 1+( )mod n←

a a yk+←
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Input parameters:  

The parameters describing either the maximum number of iterations, or a weight vector for the training samples, 
or both.

Additional outputs:  

The weight vector for the linear classifier.
Programs for Chapter 5



 46 Program descriptions
Variable-increment Perceptron with Margin

Function name: Perceptron_VIM

Description:  

This algorithm trains a linear Perceptron classifier with a margin by adjusting the weight step size.

Pseudo-code

begin initialize a, threshold θ, margin b, η(.), 

do 

 if   then  

 until  for all k

return a
end

Syntax:

     predicted_targets = Perceptron_VIM(training_patterns, training_targets, test_patterns, input parameter); 

     [predicted_targets, weights] = Perceptron_VIM(training_patterns, training_targets, test_patterns, input parameter); 

k 0←

k k 1+( )mod n←

atyk b≤ a a η k( )yk+←

atyk b>
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Additional inputs:  

1. The margin b.

2. The maximum number of iterations. 

3. The convergence criterion. 

4. The convergence rate.

Additional outputs:  

The weight vector for the linear classifier.
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Batch Variable Increment Perceptron

Function name: Perceptron_BVI

Description:  

This algorithm trains a linear Perceptron classifier in the batch mode, and where the learning rate is variable.

Pseudo-code:

begin initialize a, η(.), 

do 

Yk= {}

j = 0

 do  

 if yj is misclassified then  Append yj is toYk

 until  j = n

 until Yk= {}

return a

end

k 0←

k k 1+( )mod n←

j j 1+←

a a η k( ) y
y Yk∈
∑+←
Programs for Chapter 5



Program descriptions  49 
Syntax:

     predicted_targets = Perceptron_BVI(training_patterns, training_targets, test_patterns, input parameter); 

     [predicted_targets, weights] = Perceptron_BVI(training_patterns, training_targets, test_patterns, input parameter); 

Input parameters:  

Either the maximum number of iterations, or a weight vector for the training samples, or both.

Additional outputs:  

The weight vector for the linear classifier.
Programs for Chapter 5



 50 Program descriptions
Balanced Winnow

Function name: Balanced_Winnow

Description: 

This algorithm implements the balanced Winnow algorithm, which uses both a positive and negative weight vec-
tors, each adjusted toward the final decision boundary from opposite sides.

Pseudo-code:

begin initialize a+, a-,η(.), , α > 1

  if Sgn[a+tyk - a-tyk ] ¦ zk (pattern misclassified)

then if zk = +1 then ;   for all i

         if zk = -1 then ;   for all i

return a+, a-

end

k 0←

ai
† α

yiai
†← ai

o– α
y– iai

o–←

ai
† α

y– iai
†← ai

o– α
yiai

o–←
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Syntax:

     predicted_targets = Balanced_Winnow(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, positive_weights, negative_weights] = Balanced_Winnow(training_patterns, training_targets,
                                                                                                                      test_patterns, input parameters); 

Input parameters:  

1. The maximum number of iterations. 

2. The scaling parameter, alpha.

3. The convergence rate, eta.

Additional outputs:  

The positive weight vector and the negative weight vector.
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Batch Relaxation with Margin

Function name: Relaxation_BM

Description:  This algorithm trains a linear Perceptron classifier with margin b in the batch mode.

Pseudo-code:

begin initialize a, η(.), b, 

do 

Yk= {}

j = 0

 do  

 if   then  Append yj is toYk

 until  j = n

 until Yk= {}

return a

end

k 0←

k k 1+( )mod n←

j j 1+←

atyj b≤

a a η k( ) b aty–
y 2----------------

y Yk∈
∑+←
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Syntax:

     predicted_targets = Relaxation_BM(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = Relaxation_BM(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

1. The maximum number of iterations. 

2. The target margin, b.

3. The convergence rate, eta.

Additional outputs:  

The weight vector for the final linear classifier.
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Single-Sample Relaxation with Margin

Function name: Relaxation_SSM

Description:  

This algorithm trains a linear Perceptron classifier with margin on a per-pattern basis.

Pseudo-code

begin initialize a, b, η(.), 

do 

 if   then 

 until atyk > b for all yk

return a

end

Syntax:

     predicted_targets = Relaxation_SSM(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = Relaxation_SSM(training_patterns, training_targets, test_patterns, input parameters); 

k 0←

k k 1+( )mod n←

atyj b≤ a a η k( )b atyk–

yk 2------------------yk+←
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Input parameters:  

1. The maximum number of iterations.

2. The margin, b.

3. The convergence rate, eta.

Additional outputs: 

The weight vector for the final linear classifier.
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Least-Mean Square

Function name: LMS

Description:  

This algorithm trains a linear Perceptron classifier using the least-mean square algorithm.

Pseudo-code

begin initialize a, b, threshold θ, η(.), 

do 

 until  

return a
end

Syntax:

     predicted_targets = LMS(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = LMS(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights, weights_through_the_training] = LMS(training_patterns, training_targets, test_patterns, 
                                                                                                       input parameters); 

k 0←

k k 1+( )mod n←

a a η k( ) bk atyk–( )+← yk

η k( ) bk atyk–( ) θ<
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Input parameters:  

1. The maximum number of iterations. 

2. The convergence criterion. 

3. The convergence rate.

Additional outputs: 

1. The final weight vector.

2. The weight vector throughout the training procedure.
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Least-Squares Classifier

Function name: LS

Description:  

This algorithm trains a linear classifier by computing the weight vector using the Moore-Penrose pseudo-inverse, 
i.e.:

where P is the pattern matrix and T the target vector.

Syntax:

     predicted_targets = LS(training_patterns, training_targets, test_patterns, input parameter); 

     [predicted_targets, weights] = LS(training_patterns, training_targets, test_patterns, input parameter); 

Input parameters: 

An optional weight vector for weighted least squares.

Additional outputs:  

The weight vector of the final trained classifier.

w PPT( ) 1– PTT=
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Ho-Kashyap

Function name: Ho_Kashyap

Description:  

This algorithm trains a linear classifier by the Ho-Kashyap algorithm.

Pseudo-code

Regular Ho-Kashyap

begin initialize a, b, η(.) < 1, threshold bmin, kmax

do 

 if Abs(e) ð bmin then return a, b and exit

 until k = kmax

Print “NO SOLUTION FOUND”
end

Modified Ho-Kashyap

begin initialize a, b, η < 1, threshold bmin, kmax

k k 1+( )mod n←

e Ya b–←

e† 1 2⁄ e Abs e( )+( )←

b b 2η k( )e†+←

a Y†b←
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do 

 if Abs(e) ð bmin then return a, b and exit

 until k = kmax

Print “NO SOLUTION FOUND”
end

Syntax:

     predicted_targets = Ho_Kashyap(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = Ho_Kashyap(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights, final_margin] = Ho_Kashyap(training_patterns, training_targets, test_patterns, 
                                                                                         input parameters); 

Additional inputs:  

1. The type of training (Basic or modified). 

2. The maximum number of iterations.

3. The convergence criterion.

4. The convergence rate.

k k 1+( )mod n←

e Ya b–←

e† 1 2⁄ e Abs e( )+( )←

b b 2η k( ) e Abs e( )+( )+←

a Y†b←
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Additional outputs:  

1. The weights for the linear classifier.

2. The final computed margin.
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Voted Perceptron Classifier

Function name: Perceptron_Voted

Description: 

The voted Perceptron is a variant of the Perceptron where, in this implementation, the data may be transformed 
using a kernel function so as to increase the separation between classes.

Syntax:

     predicted_targets = Perceptron_Voted(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:

1. Number of perceptrons.

2. Kernel type: Linear, Polynomial, or Gaussian.

3. Kernel parameters.
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Pocket Algorithm

Function name: Pocket

Description:  

The pocket algorithm is a simple modification over the Perceptron algorithm. The improvement is that updates to 
the weight vector are retained only if they perform better on a random sample of the data.  In the current MAT-
LAB implementation, the weight vector is trained for 10 iterations. Then, the new weight vector and the previous 
weight vector are used to train randomly selected training patterns. If the new weight vector succeeded in classi-
fying more patterns before it misclassified a pattern compared to the old weight vector, the new weight vector 
replaces the old weight vector. The procedure is repeated until convergence or the maximum number of itera-
tions is reached.

Syntax:

     predicted_targets = Pocket(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = Pocket(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

Either the maximal number of iterations or weight vector for the training samples, or both.

Additional outputs:  

The weight vector for the final linear classifier.
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Farthest-margin perceptron

Function name: Perceptron_FM

Description: 

This algorithm implements a slight variation on the traditional Perceptron algorithm, with the only difference that 
the wrongly classified sample farthest from the current decision boundary is used to adjust the weight of the clas-
sifier.

Syntax:

     predicted_targets = Perceptron_FM(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = Perceptron_FM(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

1. The maximum number of iterations. 

2. The slack for incorrectly classified examples 

Additional outputs:  

The weight vector for the trained linear classifier.
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Support Vector Machine

Function name: SVM

Description:  

This algorithm implements a support vector machine and works in two stages.  In the first stage, the algorithm 
transforms the data by a kernel function; in the second stage, the algorithm finds a linear separating hyperplane 
in kernel space. The first stage depends on the selected kernel function and the second stage depends on the algo-
rithmic solver method selected by the user. The solver can be a quadratic programming algorithm, a simple 
farthest-margin Perceptron, or the Lagrangian algorithm. The number of support vectors found will usually be 
larger than is actually needed if the first two solvers are used because both solvers are approximate.

Syntax:

     predicted_targets = SVM(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, alphas] = SVM(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

1. The kernel function: Gauss (or RBF), Poly, Sigmoid, or Linear.  
2. Kernel parameter: For each kernel parameters the following parameters are needed:
• RBF kernel:  Gaussian width (scalar parameter)
• Poly kernel:  The integer degree of the polynomial
• Sigmoid:  The slope and constant of the sigmoid
• Linear:  no parameters are needed
3. The choice of solver: Perceptron, Quadprog, or Lagrangian.
4. The slack, or tolerance.

Additional outputs:  

The SVM coefficients.
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Regularized Descriminant Analysis

Function name: RDA

Description: 

This algorithm functions much as does the ML algorithm. However, once the mean and covariance of Gaussians 
are estimated they are shrunk.

Syntax:

     predicted_targets = RDA(training_patterns, training_targets, test_patterns, input parameter); 

Input parameter:  

The shrinkage coefficient.

Reference:

J. Friedman, "Regularized discriminant analysis," Journal of the American Statistical Association, 84:165-75 
(1989)
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Chapter 6

Stochastic Backpropagation 

Function name: Backpropagation_Stochastic

Description:  

This algorithm implements the stochastic backpropagation learning algorithm in a three-layer network of nonlin-
ear units.

Pseudo-code:

begin initialize nH, w, criterion θ, η, 

 do 

 chosen pattern

; 

 until  

return w
end

Syntax:

     predicted_targets = Backpropagation_Stochastic(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Backpropagation_Stochastic(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Backpropagation_Stochastic(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

m 0←

m m 1+←

xm randomly←

wji wji ηδjxi+← wkj wkj ηδkyj+←

∇J w( ) θ<
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where:

Wih are the input-to-hidden unit weights

Who are the hidden-to-output unit weights

Input parameters:  

1. The number of hidden units nH. 

2. The convergence criterion θ. 

3. The convergence rate.

Additional outputs:  

1. The input-to-hidden weights wji. 

2. The hidden-to-output weights wkj. 

3. The test errors through the training.
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Stochastic Backpropagation with momentum

Function name: Backpropagation_SM

Description:  

This algorithm implements the stochastic backpropagation learning algorithm in a three-layer network of nonlin-
ear units with momentum.

Pseudo-code:

begin initialize nH, w, α(<1), θ, η, , , 

 do 

 chosen pattern

;  

 until  

return w
end

Syntax:

     predicted_targets = Backpropagation_SM(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Backpropagation_SM(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Backpropagation_SM(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

m 0← bji 0← bkj 0←

m m 1+←

xm randomly←

bji η 1 α–( )δjxi αbji+← bkj η 1 α–( )δkyj αbkj+←

∇J w( ) θ<
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where:

Wih are the input-to-hidden unit weights

Who are the hidden-to-output unit weights

Input parameters:  

1. The number of hidden units nH. 

2. The convergence criterion θ. 

3. The convergence rate.

Additional outputs:  

1. The input-to-hidden weights wji. 

2. The hidden-to-output weights wkj. 

3. The test errors through the training.
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Batch Backpropagation

Function name: Backpropagation_Batch

Description:  

This algorithm implements the batch backpropagation learning algorithm in a three-layer network of nonlinear 
units.

Pseudo-code:

begin initialize nH, w, criterion θ, η, 

 do  (increment epoch)

; ; 

 do 

 pattern

;

 until m = n

; 

 until  

return w
end

r 0←

r r 1+←

m 0← ∆wji 0← ∆wkj 0←

m m 1+←

xm select←

∆wji ∆wji ηδj+← xi ∆wkj ∆wkj ηδkyj+←

wji wji ηδjxi+← wkj wkj ηδkyj+←

∇J w( ) θ<
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Syntax:

     predicted_targets = Backpropagation_Batch(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Backpropagation_Batch(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Backpropagation_Batch(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

where:

Wih are the input-to-hidden unit weights

Who are the hidden-to-output unit weights

Input parameters:  

1. The number of hidden units nH. 

2. The convergence criterion θ.

3. The convergence rate.

Additional outputs:  

1. The input-to-hidden weights wji. 

2. The hidden-to-output weights wkj.

3. The training and test errors through the training.
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Backpropagation trained using Conjugate Gradient Descent

Function name: Backpropagation_CGD

Description:  

This algorithm trains a three-layer network of nonlinear units using conjugate gradient descent (CGD). CGD 
usually helps the network converge faster than first order methods.

Syntax:

     predicted_targets = Backpropagation_CGD(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Backpropagation_CGD(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Backpropagation_CGD(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

where:

Wih are the input-to-hidden unit weights

Who are the hidden-to-output unit weights
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Input parameters:  

1. The number of hidden units, nH.

2. The convergence criterion θ.

Additional outputs:  

1. The input-to-hidden weights wji.

2. The hidden-to-output weights wkj.

3. The training error through the training.
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Recurrent Backpropagation

Function name: Backpropagation_Recurrent

Description:  This algorithm trains a three-layer network of nonlinear units having recurrent connections.  The 
network is fed with the inputs, and these are propagated until the network stabilizes. Then the weights are 
changed just as in traditional feed-forward networks.

Syntax:

     predicted_targets = Backpropagation_Recurrent(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, weights] = Backpropagation_Recurrent(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, weights, errors_throughout_training] = Backpropagation_Recurrent(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

Input parameters:  

1. The number of hidden units, nH.

2. The convergence criterion θ.

3. The convergence rate.

Additional outputs:  

1. The connection weights.

2. The errors through the training.
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Cascade-Correlation

Function name: Cascade_Correlation

Description:  This algorithm trains a nonlinear cascade-correlation neural network.

Pseudo-code

begin initialize a, criterion θ, η, 

do 

 until  

 if J(w) > θ  then add hidden unit until exit

do 

 ; 

 until  

return w
end

Syntax:

     predicted_targets = Cascade_Correlation(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Cascade_Correlation(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Cascade_Correlation(training_patterns,

k 0←

m m 1+←

wki wki η∇J w( )–←

∇J w( ) θ<

m m 1+←

wji wji η∇J w( )–← wkj wkj η∇J w( )–←

∇J w( ) θ<
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                                                                                             training_targets, test_patterns, input parameters); 

where:

Wih are the input-to-hidden unit weights

Who are the hidden-to-output unit weights

Input parameters:  

1. The convergence criterion θ.

2. The convergence rate.

Additional outputs:  

1. The input-to-hidden weights wji.

2. The hidden-to-output weights wkj.

3. The training error through the training.
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Optimal Brain Surgeon

Function name: Optimal_Brain_Surgeon

Description:  

This algorithm prunes a trained three-layer network by means of Optimal Brain Surgeon or Optimal Brain Dam-
age.

Pseudo-code:

begin initialize nH, a, θ

train a reasonably large network to minimum error

 do compute H-1 (inverse Hessian matrix)

 (saliency Lq)

 

 until J(w) > θ 
return w

end

q∗ minq
wq

2

2 H 1–[ ]qq
----------------------arg←

w w
wq∗

H 1–[ ]q∗q∗
----------------------H 1– eq∗–←
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Syntax:

     predicted_targets = Optimal_Brain_Surgeon(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Optimal_Brain_Surgeon(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Optimal_Brain_Surgeon(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

where:

Wih are the input-to-hidden unit weights

Who are the hidden-to-output unit weights

Input parameters:  

1. The initial number of hidden units.

2. The convergence rate.

Additional outputs:  

1. The input-to-hidden weights wji.

2. The hidden-to-output weights wkj.

3. The training error through the training.
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Quickprop

Function name: Backpropagation_Quickprop

Description: 

This algorithm trains a three-layer network by means of the Quickprop algorithm.

Syntax:

     predicted_targets = Backpropagation_Quickprop(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, Wih, Who] = Backpropagation_Quickprop(training_patterns, training_targets, test_patterns, 
                                                                                               input parameters); 

     [predicted_targets, Wih, Who, errors_throughout_training] = Backpropagation_Quickprop(training_patterns,
                                                                                             training_targets, test_patterns, input parameters); 

where:
Wih are the input-to-hidden unit weights
Who are the hidden-to-output unit weights
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Input parameters:  

1. The number of hidden units nH.

2. The convergence criterion.

3. The convergence rate.

4. The error correction rate.

Additional outputs:  

1. The input-to-hidden weights wji.

2. The hidden-to-output weights wkj.

3. The training error through the training.
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Projection Pursuit

Function name: Projection_Pursuit

Description:  

This algorithm implements the projection pursuit statistical estimation procedure.

Syntax:

     predicted_targets = Projection_Pursuit(training_patterns, training_targets, test_patterns, input parameter); 

     [predicted_targets, component_weights, output_weights] = Projection_Pursuit(training_patterns, training_targets,
                                                                                                                       test_patterns, input parameter); 

Input parameters:  

The number of component features onto which the data is projected.

Additional outputs:  

1. The component weights. 

2. The output unit weights
Programs for Chapter 6



Program descriptions  83 
Radial Basis Function Classifier

Function name: RBF_Network

Description:  

This algorithm trains a radial basis function classifier.  First the algorithm computes the centers for the data using 
k-means.  Then the algorithm estimates the variance of the data around each center, and uses this estimate to 
compute the activation of each training pattern to these centers. These activation patterns are used for computing 
the gating unit of the classifier, via the Moore-Penrose pseudo-inverse.

Syntax:

     predicted_targets = RBF_Network(training_patterns, training_targets, test_patterns, input parameter); 

     [predicted_targets, component_weights, output_weights] = RBF_Network(training_patterns, training_targets,
                                                                                                                       test_patterns, input parameter); 

Input parameter: 

The number of hidden units.

Additional outputs: 

1. The locations in feature space of the centers of the hidden units. 

2. The weights of the gating units.
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Chapter 7

Stochastic Simulated Annealing

Function name: Stochastic_SA

Description: This algorithm clusters the patterns using stochastic simulated annealing in a network of binary 
units.

Pseudo-code:

begin initialize T(k), kmax, si(1), wij for i, j = 1, ... N

 do 

 do select node i randomly; suppose its state is si

 if Eb < Ea

 then  

  else if 

                   then 

 until all nodes polled several times
 until k = kmax or stopping criterion met

 return E, si, for i= 1, ... N

k 0←

k k 1+←

Ea 1 2⁄ wijsisj

j

Ni

∑–←

Eb Ea–←

si si–←

e
Eb Ea–( )

T k( )----------------------–
Rand 0 1,[ ]>

si si–←
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end

Syntax: 

     [new_patterns, new_targets] = Stochastic_SA(training_patterns, training_targets, input_parameters, plot_on);

Input parameters:  

1. The number of output data points. 

2. The cooling rate.

The input flag plot_on determines if the algorithm’s progress should be shown through the learning iterations.
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Deterministic Simulated Annealing

Function name: Deterministic_SA

Description: 

This algorithm clusters the data using deterministic simulated annealing in a network of binary units.

Pseudo-code

begin initialize T(k), wij, si(1) for i, j = 1, ... N

 do 

 select node i randomly

 until k = kmax or stopping criterion met

 return E, si, for i= 1, ... N

end

Syntax: 

     [new_patterns, new_targets] = Stochastic_SA(training_patterns, training_targets, input_parameters, plot_on);

k 0←

k k 1+←

li wijsj

j

Ni

∑←

si f li T k( ),( )←
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Input parameters:  

1. The number of output data points. 

2. The cooling rate.

The input flag plot_on determines if the algorithm’s progress should be shown through the learning iterations.
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Deterministic Boltzmann Learning

Function name: BoltzmannLearning

Description:  Use deterministic Bolzmann learning to find a good combination of weak learners to classify data.

Pseudo-code

begin initialize D, η, T(k), wij for i, j = 1, ... N

do randomly select training pattern x
randomize states  si

anneal network with input and output clamped

at final, low T, calculate  

randomize states  si

anneal network with input clamped but output free

at final, low T, calculate 

 until k = kmax or stopping criterion met

 return wij

end

sisj[ ]
αiαoclamped

sisj[ ]
αiclamped

wij wij← η T⁄( ) sisj[ ]
αiαoclamped

sisj[ ]
αiclamped

–[ ]+
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Syntax:

     predicted_targets = Deterministic_Boltzmann(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, updates_throughout_learning] = Deterministic_Boltzmann(training_patterns, training_targets,
                                                                                                                      test_patterns, input parameters); 

Input parameters:  

1. The number of input units.

2. The number of hidden units.

3. The cooling rate.

4. The type of weak learner.

5. The parameters of the weak learner.

Additional outputs:  

The errors during training.
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Basic Genetic Algorithm

Function name: Genetic_Algorithm

Description:  

This implementation uses a basic genetic algorithm to build a classifier from components of weak classifiers.   

Pseudo-code

begin initialize θ, Pco, Pmut, L  N-bit chromosomes

do determine the fitness of each chromosome fi, i = 1,..., L

rank the chromosomes
do select two chromosomes with the highest score

if Rand[0,1) < Pco then crossover the pair at a randommly chosen bit

               else change each bit with proability Pmut; 

                                   remove the parent chromosomes
until N offspring have been created

 until any chromosome’s score f exceeds θ
return highest fitness chromosome (best classifier)

end
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Syntax:

     predicted_targets = Genetic_Algorithm(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters: 

1. The probability of cross-over Pco.

2. The probability of mutation Pmut.

3. The type of weak classifier.

4. The parameters of the weak learner.

5. The target or stopping error on training set.

6. The number of solutions to be returned by the program.
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Genetic Programming

Function name: Genetic_Programming

Description:  This algorithm approximates a function by evolving mathematical expressions by a genetic pro-
gramming algorithm. The function is used to classify the data.

Syntax:

      predicted_targets = Genetic_Programming(training_patterns, training_targets, test_patterns, input parameters);

      [predicted_targets, best_function_found] = Genetic_Programming(training_patterns, training_targets, test_patterns, 
                                                                                                      input parameters); 

Input patterns:  

1. The initial function length.

2. The number of generations.

3. The number of solutions to be returned by the program.

Additional outputs:

The best function found by the algorithm.
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Chapter 8

C4.5

Function name: C4_5

Description:  

Construct a decision tree recursively so as to minimize the error on a training set. Discrete features are split using 
a histogram and continuous features are split using an information criteria. The algorithm is implemented under 
the assumption that a pattern vector with fewer than 10 unique values is discrete, and will be treated as such. 
Other vectors are treated as continuous. Note that due to MATLAB memory and  processing restrictions, the 
recursion depth may be reached during the processing of a large complicated data set, which will result in an 
error.

Syntax:

      predicted_targets = C4_5(training_patterns, training_targets, test_patterns, input parameter);

Input parameter:  

The maximum percentage of error at a node that will prevent it from further splitting.
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CART 

Function name: CART

Description:  

Construct a decision tree recursively so as to minimize the error on a training set.  The criterion for splitting a 
node is either the percentage of incorrectly classified samples at the node, or the entropy at the node, or the vari-
ance of the outputs. Note that due to MATLAB memoery and  processing restrictions, the recursion depth may be 
reached during the processing of a large complicated data set, which will result in an error.

Syntax:

      predicted_targets = CART(training_patterns, training_targets, test_patterns, input parameters);

Input parameters:  

1. The splitting criterion (entropy, variance, or misclassification).

2. Maximum percentage of incorrectly assigned samples at a node.
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ID3 

Function name: ID3

Description:  

Construct a decision tree recursively so as to minimize the error on a training set.  This algorithm assumes that 
the data takes discrete values. The criterion for splitting a node is the percentage of incorrectly classified samples 
at the node. Note that due to MATLAB memoery and  processing restrictions, the recursion depth may be 
reached during the processing of a large complicated data set, which will result in an error.

Syntax:

      predicted_targets = ID3(training_patterns, training_targets, test_patterns, input parameters);

Input parameters:  

1. Maximum number of values the data can take (i.e. the number of values that the data will be binned into).

2. Maximum percentage of incorrectly assigned samples at a node.
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Naive String Matching

Function name: Naive_String_Matching

Description:  

Perform naive string matching, which is quite inefficient in the general case.  The value of this program is prima-
rily for making performance comparisons with the Boyer-Moore algorithm. Note that this algorithm is in the 
“Other” directory.

Pseudo-code

begin initialize A, a, , 

while s < n - m

 if x[1...m] = text[s+1...s+m]
 then print “pattern occurs at shift” s

 return
end

Syntax:

                  location = Naive_String_Matching(text_vector, search_string);

n length text[ ]← m length x[ ]←

s 0←

s s 1+←
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Boyer-Moor String Matching

Function name: Boyer_Moore_string_matching

Description:  

Perform string matching by the Boyer-Moore algorithm, which is typically far more efficient than naive string 
matching. Note that this algorithm is in the “Other” directory.

Pseudo-code

begin initialize A, a, , 

-occurence function,  -suffix function

 

 while s ð n - m

do  

while j > 0 and x[j] = text[s+j]

 do  

 if j = 0
  then print “pattern occurs at shift” s

          

 else  

 return
end

Syntax:

                  location = Naive_String_Matching(text_vector, search_string);

n length text[ ]← m length x[ ]←

F x( ) last← G x( ) good←

s 0←

j m←

j j 1–←

s s G 0( )+←

s s max G j( ) j F text s j+[ ]( )–,[ ]+←
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 98 Program descriptions
Edit Distance

Function name: Edit_Distance

Description:  

Compute the edit distance between two strings x and y. Note that this algorithm is in the “Other” directory.

Pseudo-code

begin initialize A, x, y,  , 

do 

 

until i = m

do 

 

until j = n

; 

 do 

 do  

C[i,j] = min[C[i-1,j] + 1, C[i,j-1]+1,C[i-1,j-1]+ 1 - δ (x[i],y[j])]
 until j = n

m length x[ ]← n length y[ ]←

C 0 0,[ ] 0←

i 0←

i i 1+←

C i 0,[ ] i←

j 0←

j j 1+←

C 0 j,[ ] j←

i 0← j 0←

i i 1+←

j j 1+←
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 until i = m
 return C[m,n]

end

Syntax:

                          distance_matrix = Edit_Distance(text_vector1, text_vector2);
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Bottom-Up Parsing

Function name: Bottom_Up_Parsing

Description:  

Perform bottom-up parsing of a string x in grammar G. Note that this algorithm is in the “Other” directory.

Pseudo-code

begin initialize G = (A, I, S, P), x = x1x2...xn

do  

 until i = n

do  

 do  

 do  

 until k = j - 1

i 0←

i i 1+←

Vi1 A A xi→{ }←

j 1←

j j 1+←

i 0←

i i 1+←

Vij ∅←

k 0←

k k 1+←

Vij Vij A A BC P B VikandC Vi k j k–,+∈∈,∈→{ }∪←
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 until i = n - j + 1
 until j = n

 if  then print “parse of” x “successful in G”

        return
end

Syntax:

                parsing_table = Bottom_Up_Parsing(alphabet_vector, variable_vector, root_symbol, production_rules, text_vector);

S V1n∈
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Grammatical Inference (Overview)

Function name: Grammatical_Inference

Description: 

Infers a grammar G from a set of positive and negative example strings and a (simple) initial grammar G0.  Note 
that this algorithm is in the “Other” directory.

Pseudo-code

begin initialize D+,D-,G0

 (number of instances in D+)

  of characters in D+

do  

read xi
+ from D+

if xi
+ cannot be parsed by G

then do propose additional productions to P and variables to I

 accept updates if G parses xi
+ but no string in D-

until i = n+

eliminate redundant productions

 return 

end

n† D†←

S S←

A set←

i 0←

i i 1+←

G A I S P, , ,{ }←
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Syntax:

              [alphabet_vector, variable_vector, root_symbol, production_rules] = Grammatical_Inference
                                                                                                                           (text_vectors_to_parse, labels);
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 104 Program descriptions
Chapter 9

AdaBoost

Function name: Ada_Boost

Description: 

AdaBoost builds a nonlinear classifier by constructing an ensemble of “weak” classifiers (i.e., ones that need per-
form only slightly better than chance) so that the joint decision is has better accuracy on the training set. It is pos-
sible to iteratively add classifiers so as to attain any given accuracy on the training set. In AdaBoost each sample 
of the training set is selected for training the weak with a probability proportional to how well it is classified. An 
incorrectly classified sample will be chosen more frequently for the training, and will thus be more likely to be 
correctly classified by the new weak classifier.

Pseudo-code

begin initialize D = {x1,y1, ... xn,yn}, kmax, W1(i) = 1/n, i = 1, ..., n

do 

train weak learner Ck using D sampled according to Wk(i)

 error of Ck measured on D using Wk(i) 

 until k = kmax 

k 0←

k k 1+←

Ek training←

αk
1
2
--- 1 Ek–( ) Ek⁄[ ]ln←

Wk 1+ i( )
Wk i( )

Zk
------------

e
αk–

ifhk xi( ) yi=

e
αkifhk xi( ) yi≠

⎩
⎪
⎨
⎪
⎧

×←
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 return Ck and αk for k = 1 to kmax (ensemble of classifiers with weights)

end

Syntax:

     predicted_targets = Ada_Boost(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, training_errors] = Ada_Boost(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

1. The number of boosting iterations.

2. The name of weak learner.

3. The parameters of the weak learner.  

Additional outputs:  

The training errors throughout the learning.
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Local boosting

Function name: LocBoost

Description:  

Create a single nonlinear classifier based on boosting of localized classifiers. The algorithm assigns local classi-
fiers to incorrectly classified training data, and optimizes these local classifiers to reach the minimum error.

Syntax:

     predicted_targets = LocBoost(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

1. The number of boosting iterations.

2. The number of EM iterations. 

3. The number of optimization steps.

4. The type of weak learner. 

5. The weak learner parameters.

Reference

R. Meir, R. El-Yaniv and S. Ben-David, "Localized boosting," Proceedings of the 13th Annual Conference on 
Computational Learning Theory
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Bayesian Model Comparison

Function name: Bayesian_Model_Comparison 

Description:  

Bayesian model comparison, as implemented here, selects the best mixture of Gaussians model for the data.  
Each full candidate model is constructed using Expectation-Maximization. The program then computes the 
Occam factor and finally returns the model that maximizes the Occam factor.

Syntax:

     predicted_targets = Bayesian_Model_Comparison(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  Maximum number of Gaussians for each models.
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Component Classifiers with Discriminant Functions

Function name: Components_with_DF

Description:  

This implementation uses logistic component classifiers and a softmax gating function to create a global classi-
fier. The parameters of the components are learned using Newton descent, and the parameters of the gating sys-
tem using gradient descent.

Syntax:

     predicted_targets = Components_with_DF(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, errors] = Components_with_DF(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

The component classifiers as pairs of classifier name and classifier parameters.

Additional outputs:  

The errors through the training.
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Component Classifiers without Discriminant Functions

Function name: Components_without_DF 

Description: This program works with any of the classifiers in the toolbox as components to build a single meta-
classifier. The gating unit parameters are learned through gradient descent.

Syntax:

     predicted_targets = Components_without_DF(training_patterns, training_targets, test_patterns, input parameters); 

     [predicted_targets, errors] = Components_without_DF(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

The component classifiers as pairs of classifier name and classifier parameters.

Additional outputs:  

The errors through the training.
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ML_II

Function name: ML_II 

Description: 

This algorithm finds the best multiple Gaussian model for the data, and uses this model to construct a decision 
surface. The algorithm computes the Gaussian parameters for the data via the EM algoritm, assuming varying 
number of Gaussians. Then, the algorithm computes the probability that the data was generated by these models 
and returns the most likely such model. Finally, the algorithm uses the parameters of this model to construct the 
Bayes decision region.

Syntax:

     predicted_targets = ML_II(training_patterns, training_targets, test_patterns, input parameter); 

Input parameters:  

Maximum number of Gaussians components per class.
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Interactive Learning

Function name: Interactive_Learning

Description:  

This algorithm implements interactive learning in a particular type of classifer, specifically, the nearest-neighbor 
interpolation on the training data. The training points that have the highest ambiguity are referred to the user for 
labeling, and each such label is used for improving the classification.

Syntax:

     predicted_targets = Interactive_Learning(training_patterns, training_targets, test_patterns, input parameters); 

Input parameters:  

1. The number of points presented as queries to the user. 

2. The weight of each queried point relative the other data points.
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Chapter 10

k-Means Clustering 

Function name: K_means

Description:  

This is a top-down clustering algorithm which attempts to find the c representative centers for the data.  The ini-
tial means are selected from the training data itself. k-means is biased towards spherical clusters with similar 
variances.

Pseudo-code

begin initialize n, c, µ1, µ2, ..., µc

do classify n samples according to nearest µi

recompute µi

 until no change in µi

 return µ1, µ2, ..., µc

end
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Syntax:

               [clusters, cluster_labels] = k_means(patterns, targets, input_parameter, plot_on);

               [clusters, cluster_labels, original_data_labels] = k_means(patterns, targets, input_parameter, plot_on);

Input parameter:  

The number of desired output clusters, c.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Fuzzy k-Means Clustering

Function name: fuzzy_k_means

Description: 

This is a top-down clustering algorithm which attempts to find the k representative centers for the data.  The ini-
tial means are selected from the training data itself.  This algorithm uses a slightly different gradient search than 
the simple standard k-means algorithm, but generally yields the same final solution.

Pseudo-code

begin initialize n, c, b, µ1, µ2, ..., µc,, , i = 1, ..., c; j = 1, ..., n

normalize 
 do recompute µi
 recompute 
 until small change in µ1 and 

return µ1, µ2, ..., µc
end

P̂ ωi xj( )

P̂ ωi xj( )

P̂ ωi xj( )
P̂ ωi xj( )
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Syntax:

               [clusters, cluster_labels] = fuzzy_k_means(patterns, targets, input_parameter, plot_on);

               [clusters, cluster_labels, original_data_labels] = fuzzy_k_means(patterns, targets, input_parameter, plot_on);

Input parameter:  

The number of desired output clusters, c.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Kernel k-Means Clustering 

Function name: kernel_k_means

Description:  

This is a top-down clustering algorithm which is identical to the k-means algorithm (See above), except that the 
data is first mapped to a new space using a kernel function.

Syntax:

               [clusters, cluster_labels] = kernel_k_means(patterns, targets, input_parameter, plot_on);

               [clusters, cluster_labels, original_data_labels] = kernel_k_means(patterns, targets, input_parameter, plot_on);

Input parameters:  

1. The number of desired output clusters, c.
2. The kernel function: Gauss (or RBF), Poly, Sigmoid, or Linear.  
3. Kernel parameter: For each kernel parameters the following parameters are needed:
• RBF kernel:  Gaussian width (scalar parameter)
• Poly kernel:  The integer degree of the polynomial
• Sigmoid:  The slope and constant of the sigmoid
• Linear:  no parameters are needed
The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Spectral k-Means Clustering 

Function name: spectral_k_means

Description:  

This is a top-down clustering algorithm which is identical to the k-means algorithm (See above), except that the 
data is first mapped to a new space using a kernel function and the clustering is performed in that space.

Syntax:

               [clusters, cluster_labels] = spectral_k_means(patterns, targets, input_parameter, plot_on);

               [clusters, cluster_labels, original_data_labels] = spectral_k_means(patterns, targets, input_parameter, plot_on);

Input parameters:  

1. The number of desired output clusters, c.
2. The kernel function: Gauss (or RBF), Poly, Sigmoid, or Linear.  
3. Kernel parameter: For each kernel parameters the following parameters are needed:
• RBF kernel:  Gaussian width (scalar parameter)
• Poly kernel:  The integer degree of the polynomial
• Sigmoid:  The slope and constant of the sigmoid
• Linear:  no parameters are needed
4. Clutering type: The clustering type can be:
• Multicut
• NJW (According to the method proposed by Ng, Jordan, and Weiss)
The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  
The number of the cluster assigned to each input pattern.
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Basic Iterative Minimum-Squared-Error Clustering

Function name: BIMSEC

Description:  

This algorithm iteratively searches for the c clusters that minimize the sum-squared error of the training data with 
respect to the nearest cluster center.  The initial clusters are selected from the data itself.

Pseudo-code:

begin initialize n, c, m1, m2,..., mc

do randomly select a sample 

 (classify )

 if ni ¦ 1 then compute

 if ρk < ρj for all j then transfer  to Dk

 recompute Je, mi, mk

 until no change in Je in n attempts

 return m1, m2i, ..., mc

end

x̂

i miniarg mi' x̂–← x̂

ρj

nj

nj 1+
------------- x̂ mj– 2 j i≠

nj

nj 1–
------------- x̂ mj– 2 j i=

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

x̂
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Syntax:

               [clusters, cluster_labels] = BIMSEC(patterns, targets, input_parameter, plot_on);

               [clusters, cluster_labels, original_data_labels] = BIMSEC(patterns, targets, input_parameter, plot_on);

Input parameter:  

The number of desired output clusters, c.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Agglomerative Hierarchical Clustering

Function name: AGHC

Description:  

This function implements the bottom-up clustering.  The algorithm starts by assuming each training point is its 
own cluster and then iteratively merges the nearest such clusters (where proximity is computed by a distance 
function) until the desired number of clusters are formed.

Pseudo-code

begin initialize c, , , i = 1, ... n

do  

find nearest clusters, say, Di and Dj

merge Di and Dj

 until 

 return c clusters

end

ĉ n← Di xi{ }←

ĉ ĉ 1–←

c ĉ=
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Syntax:

               [clusters, cluster_labels] = AGHC(patterns, targets, input_parameters, plot_on);

               [clusters, cluster_labels, original_data_labels] = AGHC(patterns, targets, input_parameters, plot_on);

Input parameters:  

1. The number of desired output clusters, c.

2. The type of distance function to be used (min, max, avg, or mean).

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Stepwise Optimal Hierarchical Clustering

Function name: SOHC

Description:  

This function implements the bottom-up clustering.  The algorithm starts by assuming each training point is its 
own cluster and then iteratively merges the two clusters that change a clustering criterion the least, until the 
desired number of clusters c are formed.

Pseudo-code:

begin initialize c, , , i = 1, ... n

do  

find clusters whose merger changes the criterion the least, say, Di and Dj

merge Di and Dj

 until 

 return c clusters

end

ĉ n← Di xi{ }←

ĉ ĉ 1–←

c ĉ=
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Syntax:

               [clusters, cluster_labels] = SOHC(patterns, targets, input_parameter, plot_on);

               [clusters, cluster_labels, original_data_labels] = SOHC(patterns, targets, input_parameter, plot_on);

Input parameter:  

The number of desired output clusters, c.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Competitive Learning

Function name: Competitive_learning

Description:  

This function implements competitive learning clustering, where the nearest cluster center is updated according 
to the position of a randomly selected training pattern.

Pseudo-code

begin initialize η, n, c, k, w1, ... , wc

, i = 1, ..., n   (augment all patterns)

, i = 1, ..., n   (normalize all patterns)

       (classify x)

      (weight update)

     (weight normalization)

 until no significant change in w in k attempts
 return  w1, ... , wc

end

xi 1 xi{ , }←

xi xi xi⁄←

j maxj'arg wj'
tx←

wj wj← ηx+

wj wj wj⁄←
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Syntax:

             [clusters, cluster_labels] = Competitive_Learning(patterns, targets, input_parameters, plot_on);

               [clusters, cluster_labels, original_data_labels] = Competitive_Learning(patterns, targets, input_parameters, plot_on);

              [clusters, cluster_labels, original_data_labels, weights] = Competitive_Learning(patterns, targets, input_parameters,
                                                                                                                                                                     plot_on);

Input parameters:  

1. The number of desired output clusters, c.

2. The learning rate.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

1. The number of the cluster assigned to each input pattern.

2. The weight matrix representing the cluster centers.
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Basic Leader-Follower Clustering

Function name: Leader_Follower

Description:  

This function implements basic leader-follower clustering, which is similar to competitive learning but addition-
ally generates a new cluster center whenever a new input pattern differs by more than a threshold distance θ from 
existing clusters.

Pseudo-code

begin initialize η, θ

do accept new x

       (find nearest cluster)

if  

then 

else add new 

       (normalize weight)

 until no more patterns
 return w1, w2, ... 

end

w1 x←

j maxj'arg x wj'–←

x wj– θ<

wj wj ηx+←

w x←

w w w⁄←
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Syntax:

               [clusters, cluster_labels] = Leader_Follower(patterns, targets, input_parameters, plot_on);

               [clusters, cluster_labels, original_data_labels] = Leader_Follower(patterns, targets, input_parameters, plot_on);

               [clusters, cluster_labels, original_data_labels, weights] = Leader_Follower(patterns, targets, input_parameters,
                                                                                                                                                                     plot_on);

Input parameters:  

1. The minimum distance to connect across θ.

2. The rate of convergence.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

1. The number of the cluster assigned to each input pattern.

2. The weight matrix representing the cluster centers.
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Hierarchical Dimensionality Reduction

Function name: HDR

Description: This function clusters similar features so as to reduce the dimensionality of the data.

Pseudo-code:

begin initialize d’, , i = 1, ..., d

do 
computer R
find most correlated distinct clusters, say Di and Dj

     (merge)
delete Dj

 until  
 return d’ clusters

end

Syntax:

               [new_patterns, new_targets] = HDR(patterns, targets, input_parameter);

Input parameter:  

The desired number of dimensions d’ for representing the data.

Di xi{ }←

d̂ d 1+←

d̂ d̂ 1–←

Di Di Dj∪←

d̂ d'=
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Independent Component Analysis

Function name: ICA

Description: Independent component analysis is a method for blind separation of signals. This method assumes 
there are N independent sources, linearly mixed to generate M signals, MŠN. The goal of this method is to find 
the mixing matrix that will make it possible to recover the source signals. The mixing matrix does not generate 
orthogonal sources (as in PCA), rather the sources are found so that they are as independent as possible. The pro-
gram works in two stages. First, the data is standardized, i.e., whitened and scaled to the range [-1, 1]. The data 
is then rotated to find the correct mixing matrix; this rotation is performed via a nonlinear activation function. 
Possible functions are, for example, odd powers of the input and hyperbolic tangents.

Syntax:

               [new_patterns, new_targets] = ICA(patterns, targets, input_parameters);

               [new_patterns, new_targets, unmixing_mat] = ICA(patterns, targets, input_parameters);

               [new_patterns, new_targets, unmixing_mat, reshaping matrix, means_vector] = ICA(patterns, targets,
                                                                                                                                           input_parameters);

Input parameters:  

1. The output dimension. 

2. The convergence rate.

Additional outputs:  

1. The mixing matrix.

2. The unmixing matrix and the means of the inputs.
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Online Single-Pass Clustering

Function name: ADDC

Description: 

An on-line (single-pass) clustering algorithm which accepts a single sample at each step, updates the cluster cen-
ters and generates new centers as needed. The algorithm is efficient in that it generates the cluster centers with a 
single pass of the data.

Syntax:

               [cluster_centers, cluster_targets] = ADDC(patterns, targets, input_parameter, plot_on);

Input parameter:  

The number of desired clusters.

The input parameter plot_on determines if the cluster centers are plotted during training.

Reference:

I. D. Guedalia, M. London and M. Werman, "An on-line agglomerative clustering method for nonstationary 
data," Neural Computation, 11:521-40 (1999).
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Discriminant-Sensitive Learning Vector Quantization

Function name: DSLVQ

Description: 

This function performs learning vector quantization (i.e., represents a data set by a small number of cluster cen-
ters) using a distinction or classification criterion rather than a traditional sum-squared-error criterion.

Syntax:

               [new_patterns, new_targets] = DSLVQ(patterns, targets, input_parameter, plot_on);

               [new_patterns, new_targets, weights] = DSLVQ(patterns, targets, input_parameter, plot_on);

Input parameter:  

The number of desired output clusters, c.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The final weight vectors representing cluster centers.

Reference

M. Pregenzer, D. Flotzinger and G. Pfurtscheler, "Distinction sensitive learning vector quantization:  A new 
noise-insensitive classification method," Proceedings of the 4th International Conference on Artificial Neural 
Networks, Cambridge UK (1995)
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Exhaustive Feature Selection

Function name: Exhaustive_Feature_Selection

Description: 

This function searches for the combination of features that yields the best classification accuracy on a data set.  
The search is exhaustive in subsets of features, and each subset is tested using 5-fold cross-validation on a given 
classifier. Note that applying this function when there are more than 10 features is impractical.

Syntax:

              [new_patterns, new_targets] = Exhaustive_Feature_Selection(patterns, targets, input_parameters);

               [new_patterns, new_targets, feature_numbers] = Exhaustive_Feature_Selection(patterns, targets, input_parameters);

Input parameters:  

1. The output dimension. 

2. The classifier type.

3. The parameters appropriate to the chosen classifier.

Additional outputs:  

The indexes of the selected features.
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Information-Based Feature Selection

Function name: Information_based_selection

Description: 

This function selects the best features for classification based on information-theoretic considerations; the algo-
rithm can be applied to virtually any basic classifier. However this program is often slow because the cross-
entropy between each pair of features must be computed. Moreover, the program may be inaccurate if the num-
ber of data points is small.

Syntax:

              [new_patterns, new_targets] = Information_based_selection(patterns, targets, input_parameter);

               [new_patterns, new_targets, feature_numbers] = Information_based_selection(patterns, targets, input_parameter);

Input parameter:  

The desired number of ouput dimensions.

Additional outputs:  

The indexes of the features returned.

Reference:

D. Koller and M. Sahami, "Toward optimal feature selection," Proceedings of the 13th International Conference 
on Machine Learning, pp. 284-92 (1996)
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Kohonen Self-Organizing Feature Map

Function name: Kohonen_SOFM

Description:  

This function clusters the data by generating a self-organized feature map or “topologically correct map.”

Syntax:

               [clusters, cluster_labels] = Kohonen_SOFM(patterns, targets, input_parameters, plot_on);

               [clusters, cluster_labels, original_data_labels] = Kohonen_SOFM(patterns, targets, input_parameters, plot_on);

Input parameter:  

1. The number of desired output clusters, c.

2. Window width.

The input parameter plot_on determines if the cluster centers are plotted during training.

Additional outputs:  

The number of the cluster assigned to each input pattern.
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Multidimensional Scaling

Function name: MDS

Description: 

This function represents a data set in a lower dimensional space such that if two patterns x1 and x2 are close in the 
original space, then their images y1 and y2 in the final space are also close.  Conversely, if two patterns x1 and x3 
are far apart in the initial space, then their images y1 and y3 in the final space are also far apart.  The algorithm 
seeks an optimum of a global criterion function chosen by the user.

Syntax:

               [clusters, cluster_labels] = MDS(patterns, targets, input_parameters);

Input parameters:  

1. The criterion function Jee, Jef, or Jff (ee - emphasize errors, ef - emphasize large products of errors and frac-
tional errors, or ff - emphasize large fractional errors). 

2. The number of output dimensions.

3. The convergence rate.
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Minimum Spanning Tree Clustering

Function name: min_spanning_tree

Description:  

This function builds a minimum spanning tree for a data set based on either nearest neighbors or inconsistent 
edges.

Syntax:

               [clusters, cluster_labels] = min_spanning_tree(patterns, targets, input_parameters, plot_on);

Input parameter:  

1. The linkage determination method (NN - nearest neighbor, inc - inconsistant edge). 

2. The number of output data points per cluster or difference factor.

The input parameter plot_on determines if the cluster centers are plotted during training.
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Principle Component Analysis

Function name: PCA

Description: 

This function implements principle component analysis.  First the algorithm subtracts the sample mean from 
each data point.  Then the program computes the eigenvectors of the covariance matrix of the data and selects the 
largest eigenvalues and associated eigenvectors. The data is then transformed to a new hyperspace by multiply-
ing them with these eigenvectors.

Syntax:

               [new_patterns, new_targets] = PCA(patterns, targets, input_parameter);

               [new_patterns, new_targets, unmixing_mat] = PCA(patterns, targets, input_parameter);

               [new_patterns, new_targets, unmixing_mat, reshaping matrix, means_vector] = PCA(patterns, targets,
                                                                                                                                           input_parameter);

Input parameter:  

The output dimension. 

Additional outputs:  

1. The mixing matrix.

2. The unmixing matrix and the means of the inputs.
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Nonlinear Principle Component Analysis

Function name: NLPCA

Description: 

The function implements a neural network with three hidden layers:  a central layer of linear units and two non-
linear sigmoidal hidden layers.  The number of units in the central linear layer is set equal to the desired output 
dimension. The network is trained as an auto-associator—i.e., mapping input to the same target input—and the 
nonlinear principle components are represented at the central linear layer.

Syntax:

               [new_patterns, new_targets] = NLCA(patterns, targets, input_parameters);

Input parameters: 

1. The number of desired output dimensions.

2. The number of hidden units in the nonlinear hidden layers.
Programs for Chapter 10



Program descriptions  139 
 

Kernel Principle Component Analysis

Function name: kernel_PCA

Description: 

This function implements principle component analysis with kernel functions.  This algorithm is identical to 
principle component analysis, except that the data is first mapped to a new space using a kernel function

Syntax:

               [new_patterns, new_targets] = kernel_PCA(patterns, targets, input_parameter);

     

Input parameters:  

1. The output dimension.
2. The kernel function: Gauss (or RBF), Poly, Sigmoid, or Linear.  
3. Kernel parameter: For each kernel parameters the following parameters are needed:
• RBF kernel:  Gaussian width (scalar parameter)
• Poly kernel:  The integer degree of the polynomial
• Sigmoid:  The slope and constant of the sigmoid
• Linear:  no parameters are needed
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Linear Vector Quantization 1

Function name:  LVQ1

Description:  

This function finds a representative cluster centers for labeled data, and can thus be used as a clustering or as a 
classification method.  The program moves cluster centers toward patterns that are in the same class as the cen-
ters, and moves other centers away from those patterns of other classes.

Syntax:

               [clusters, cluster_labels] = LVQ1(patterns, targets, input_parameters, plot_on);

Input parameter:  

The number of output data points.

The input parameter plot_on determines if the cluster centers are plotted during training.
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Linear Vector Quantization 3

Function name:  LVQ3

Description:  

This function finds a representative cluster centers for labeled data, and can thus be used as a clustering or as a 
classification method.  The program moves cluster centers toward patterns that are in the same class as the cen-
ters, and moves other centers away from those patterns of other classes. LVQ3 differs from LVQ1 in details of 
the rate of the weight updates.

Syntax:

               [clusters, cluster_labels] = LVQ3(patterns, targets, input_parameters, plot_on);

Input parameter:  

The number of output data points.

The input parameter plot_on determines if the cluster centers are plotted during training.
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Sequential Feature Selection

Function name: Sequential_Feature_Selection

Description: 

 This function sequentially selects features for the lowest classification error. Then, until enough features are 
found, a feature that gives the largest reduction in classification error is added to the set. For backward selection, 
the process begins with the full set of features, and one is removed at each iteration.

Syntax:

              [new_patterns, new_targets] = Sequential_Feature_Selection(patterns, targets, input_parameters);

               [new_patterns, new_targets, feature_numbers] = Sequential_Feature_Selection(patterns, targets, input_parameters);

Input parameters: 

1. The choice of search (Forward or Backward).

2. The output dimension. 

3. The classifier type.

4. The parameters appropriate to the chosen classifier.

Additional outputs:  

The indexes of the selected features.
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Genetic Culling of Features

Function name: Genetic_Culling

Description: 

This function performs feature selection using a genetic algorithm of the culling type, i.e., it selects subsets.  The 
algorithm randomly partitions the features into groups of size Ng.  Each candidate partition is evaluated for clas-
sification accuracy using five-fold cross validation.  Then, the algorithm deletes a fraction of the worst-perform-
ing groups and generate the same number of groups by sampling from the remaining groups.  The whole process 
then iterates until a criterion classification performance has been achieved or there is negligable improvement.

Syntax:

              [new_patterns, new_targets] = Sequential_Feature_Selection(patterns, targets, input_parameters);

               [new_patterns, new_targets, feature_numbers] = Sequential_Feature_Selection(patterns, targets, input_parameters);

Input parameters: 

1. The fraction of groups discarded at each iteration.

2. The number of features in each solution (The output dimension). 

3. The classifier type.

4. The parameters appropriate to the chosen classifier.

Additional outputs:  

The indexes of the selected features.
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Reference:

E. Yom-Tov and G. F. Inbar, "Selection of relevant features for classification of movements from single move-
ment-related potentials using a genetic algorithm," 23rd Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (2001).
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